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Abstract: The Internet of Things (IoT) represents a transformative technology that allows in-
terconnected devices to exchange data over the Internet, enabling automation and real-time
decision making in a variety of areas. A key aspect of the success of the IoT lies in its integra-
tion with low-resource hardware, such as low-cost microprocessors and microcontrollers.
These devices, which are affordable and energy efficient, are capable of handling basic tasks
such as sensing, processing, and data transmission. Their low cost makes them ideal for
IoT applications in low-income communities where the government is often absent. This
review aims to present some applications—such as a flood detection system; a monitoring
system for analog and digital sensors; an air quality measurement system; a mesh video
network for community surveillance; and a real-time fleet management system—that use
low-cost hardware such as ESP32, Raspberry Pi, and Arduino, and the MQTT protocol
used to implement low-cost monitoring systems applied to improve the quality of life of
people in small cities or communities.

Keywords: Internet of Things—IoT; smart cities; low-end hardware; social applications

1. Introduction
The Internet of Things (IoT) is taking a preponderant role in the development of

modern society [1], and it has evolved to encompass billions of devices across numerous
domains, including healthcare, industrial automation, agriculture, and smart cities [2].

In healthcare, IoT devices—including wearables [3]—enable remote patient mon-
itoring, fitness activity tracking, and smart medical equipment integration, enhancing
treatment outcomes and reducing costs [4]. Industrial settings benefit from IoT through
predictive maintenance, efficient resource allocation, and improved safety measures. The
integration of IoT in urban environments has given rise to the concept of Smart Cities [5],
where advanced technology and data analytics optimize city operations and enhance the
quality of urban living.

Smart cities utilize IoT devices and networks to gather and analyze vast amounts of
data from various sectors, including energy, transportation, public safety, and healthcare.
Integrating data from devices through the cloud (fog) facilitates real-time decision making,
resource management, and improved service delivery [6]. For instance, urban mobility is
enhanced through IoT-powered smart traffic management systems that reduce congestion
and improve public transportation efficiency.
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Energy management in smart cities is transformed through smart grids that dynami-
cally adjust energy supply based on consumption data, reducing waste and carbon foot-
prints. Public safety is also improved, with IoT-enabled surveillance systems and predictive
policing helping police respond more efficiently, especially in underserved areas.

While smart cities often leverage high-performance IoT systems, there is a growing
trend towards utilizing low-end hardware such as microcontrollers and low-cost sensors in
IoT applications [7,8], especially in resource-constrained settings. These devices, including
microprocessors like the ESP32 or Arduino boards (Espressif Systems, China), offer a cost-
effective solution for connecting everyday objects, creating affordable IoT systems. Low-end
hardware is particularly beneficial in scenarios where cost and simplicity are critical.

Despite their limited processing power, these components can efficiently handle
real-time data collection and communication thanks to improvements in lightweight IoT
protocols such as MQTT [9] and CoAP. In regions with limited technological infrastructure
or low-income populations, the use of low-end IoT hardware provides an avenue for
enhancing productivity and connectivity. From improving access to healthcare to enhancing
agricultural yields through smart sensors, these technologies make the IoT more accessible,
fostering digital inclusion and societal benefits [10].

The rapid expansion of IoT technology presents opportunities and challenges, partic-
ularly in ensuring data privacy, security, and scalability. Nevertheless, the IoT remains a
critical driver of technological innovation and societal transformation, representing the next
step in the evolution of urban spaces and addressing modern challenges while improving
sustainability and enhancing the lives of citizens by enabling policy-makers to be more
proactive instead of just reacting to events.

By addressing these challenges and opportunities, we can unlock the full potential
of IoT applications in low-income populations, promoting greater access to essential ser-
vices and improving the overall quality of life, mainly in areas where the state is absent.
Enforcing the use of low-cost hardware such as ESP32,Raspberry Pi (Newark Corpora-
tion, Chicago, USA), Arduino, and the MQTT protocol for the implementation of low-cost
monitoring systems can be applied to improve the quality of life of people in small cities
or communities.

The following sections present the related work and some applications as follows: the
implementation of a monitoring system for analog and digital sensors based on ESP32 and
Raspberry Pi Pico; a flood detection system based on Arduino hardware and AWS cloud
services; an air quality measurement system based on ESP32 and Raspberry Pi; a mesh
video network for community surveillance; and a real-time fleet management system.

2. Related Work
2.1. Low-Power Wide-Area Networks

Part of the current success of IoT is its incorporation to Low-Power Wide-Area Net-
works (LPWAN), which allows us to extend the coverage of IoT applications to low power
consumption devices and networks [11,12].

There are several long-range LPWAN technologies that are under current use and
development, such as LoRaWAN/LoRa, LTEM, Sigfox, NBIoT, and MQTT [13]. Each
of them may or may not consist, in both the physical and logical layer, of the wireless
communications system. For instance, MQTT only develops a single-layer communications
protocol that sends small messages, so it can be, in principle, mounted on any physical
infrastructure [13], which is the reason why we adopted this protocol in our presented
applications. On the other side, NBIoT and LTEM have multi-layer protocols because
they are mainly adapted to 4G physical layers. In this sense, we can talk about a set of
LPWAN communications protocols that posses the same features as small frames, few
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frames, simple security and integrity techniques (if any), as well as several identifiers for
users and devices [13]. Research has been done on the development and application of
LPWAN protocols [14].

2.2. Data Encryption

Data encryption techniques are used in order to keep secure the information that is
transmitted through a communications network or for exchanging sensitive data between
users or groups of users. These techniques become essential when the exchange of in-
formation is done between devices, where there is no user to control the criteria of what
information can be shared and what information should not be shared. This implies that
it is necessary to choose the appropriate techniques for the type of application and/or
system [15].

The cipher algorithms are generally defined by mathematical components. In Table 1,
the common elements of such a cryptosystem are shown.

Table 1. Cryptosystem mathematical components [16].

Variable Meaning

P Set of possible plain text

C Set of possible cipher text

k Set of possible keys

ϵPi(k) Encryption rule

δPi(k) Decryption rule

The ideal cryptosystem is defined by having a big set of k and C in order to frustrate
brute force attacks. Therefore, for IoT-ready architectures, we must design such a cryptosys-
tem while reducing the processing burden involved with it as much as possible. The shift
cipher is the most basic cipher algorithm, and as its name suggest, it consists of shifting
an n-alphabet and changing the corresponding object of the alphabet. The metrics of the
shift cipher have n − 1 possible shifts; in general, this one has P = C = k. The operation of
shifting is done by Equations (1) and(2) as follows [16]:

ϵPi(k) = (Pi + k)mod(n) (1)

and
δPj(k) = (Pj − k)mod(n) (2)

where Pj is the encoding (ϵPi ) and the k value must be the same for the decoding δPj .

3. Building a Monitoring System for Analog and Digital Sensors
People with physical disabilities may need a certain level of automation at home

to facilitate daily activities. An example of this is presented in [17], which describes a
pilot study conducted with people with physical disabilities at home to investigate the
effectiveness of home modification in improving the quality of life. In some cases, simple
technologies are enough, for example, [18] indicates that Alexa helps consumers with
special needs to regain their independence and freedom.

Inspired by such necessity, we work on how to monitor some variables for applications
on the remote activation of devices at home. Specifically, we describe the use of the ESP32
and Raspberry Pi Pico W in conjunction with MQTT to create a remote monitoring system
for sensors. The goal is to promote a communication and monitoring system for variables,
whether they are analog or digital, as well as to enable the remote activation of devices,
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such as turning on lamps and using low-cost components and the available Wi-Fi network
in residences.

For communication via the MQTT protocol, the use of a broker is necessary, as it serves
as a kind of server that manages the communication between the devices connected to the
network. As mentioned before, these devices will be the ESP32, the Raspberry Pico W, and
the dashboard that will be used to monitor the variables.

As shown in Figure 1, both the broker and the dashboard utilize mobile applications
that can be downloaded for free, which helps reduce the project’s costs.

Figure 1. Block diagram of the assembled MQTT network with the main components.

3.1. Materials and Technologies Applied for System Implementation

For the implementation, we used the ESP32 and Raspberry Pico W microcontrollers,
as well as temperature and humidity sensors, a reed switch sensor, and a relay for output
control. All of them are described in the following.

The DHT22 is a humidity and temperature sensor with a calibrated digital output,
ensuring reliability and stability. It has an 8-bit chip and is calibrated in a precise chamber,
with the coefficient stored in OTP memory. The sensor is small, low-power, and allows for
long-distance transmission (up to 100 m).

The reed switch is a magnetic field sensor that closes its contacts when a magnet
approaches and opens them when it moves away. To monitor the opening and closing
of doors and windows, a model with a plastic casing was used in order to facilitate
the installation.

Microcontrollers operate with voltages ranging from 3.3 VDC to 5 VDC, making it
necessary to use relays to control devices that require higher voltages. The project used
a 5 VDC electromechanical relay, with contacts that can handle up to 8 A, to actuate the
door/window latch.

The ESP32 and Raspberry Pico W microcontrollers were used to demonstrate the
versatility of the MQTT protocol, which is open and has a low cost. Programming was
performed in MicroPython version 1.24.1, a lightweight version of the Python language
optimized for microcontrollers that available under the MIT license. The Thonny software
Version 10.0 was used to transfer the code to the microcontrollers.

As it is an application for residential use, it is important to have a simple way of
controlling the system for any kind of user; for this reason, smartphone applications are
needed. The MQTT protocol requires a broker to manage messages between connected
clients and a dashboard to monitor the network information. An application is used to
display temperature values, humidity, reed sensor status, and relay output.

The Narada MQTT broker is an open source broker for Android, ideal for prototyping
MQTT servers on smartphones. The choice of Android is based on data from Statcounter,
available as of April 2024, which show that 81.38% of smartphones in Brazil use Android
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OS, while 18.39% use iOS, [19]. The application allows for configuring access to the MQTT
network, including the router’s IP address, username, and password for security.

A dashboard can be a mobile application, a PDF file, or a physical screen displaying
information. In the context of information technology, it is a visual panel that centralizes
indicators and metrics, assisting in decision making. Technical dashboards analyze device
performance and availability, while business management dashboards provide an overview
of organizational performance. In this application, the MQTT Dashboard is a mobile
application that, when connected to the broker, receives data such as temperature, humidity,
and door status in real-time, also allowing for the configuration of a button to trigger the
relay output of the prototype [20].

3.2. Implementation Steps

We begin this section by describing the electrical diagrams of the circuits that represent
the clients controlled by the ESP32 and Raspberry Pico embedded in them. These circuits
will process the sensor signals and send them to the broker via the MQTT protocol. One
of the circuits uses the ESP32 as a base, as shown in Figure 2, while the other uses the
Raspberry Pico W, as shown in Figure 3, thus demonstrating that the protocol can be used
on different platforms.

Figure 2. Electrical diagram of the MQTT client that is controlled by the ESP32.

For the MQTT broker, the mobile application Narada MQTT was configured. After
the broker’s configuration and initialization, we can observe the broker’s connection with
the prototypes, as it is possible to monitor the activities of publishing and subscribing to
the defined topics (C1 = Client1 (RASPBERRY); C2 = Client2 (ESP32); T = Temperature;
U = Humidity; R = Reed Switch; S = Relay Output).

Subsequently, the configuration and assembly of the dashboard were carried out. To
this end, the mobile application MQTT Dashboard was used. After linking the dashboard
icons with the topics, the temperature and humidity data began to be displayed, along with
the status icon of the reed switch and the relay output activation icon. After this step, tests
were initiated for activating the relay output and testing for the status of the reed switch.
Examples of configuration screens are shown in Figure 4.

When activating the locking icon of Client1 (relay output, identified as “lock” on
the dashboard), it publishes the payload value defined in the program stored on the
RASPBERRY to the topic C1/S/. In the case of the ESP32, it publishes to the topic C2/S/
as Client2. The microcontrollers, configured to perform polling every 5 s, check for changes



Big Data Cogn. Comput. 2025, 9, 19 6 of 21

in the topic and execute the action defined in the program. In this case, the defined action
is to turn on the relay and, consequently, activate the load, which, in this case, is an LED.

Figure 3. Electrical diagram of the MQTT client that is controlled by the Raspberry Pico W.

Figure 4. Smartphone application interface.

Thus, it was concluded that the commands executed via the dashboard to activate the
relay output of both prototypes worked as designed. For the reed switch test, a structure
was built in the prototype aimed at simulating the operation of a door or window.

The goal is to show that when the “door” is opened, the reed switch will open its
internal electrical contact. Thus, a signal will be sent to an input of the microcontroller that,
by identifying the change in status, will publish the payload value defined in the program
to the topic C1/R/. In this case, the dashboard will receive this information and change the
icon representing the door as open/closed.
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It can also be observed on the dashboard that the monitoring of temperature and
humidity works normally, updating every 5 s. This time can be adjusted to allow, this and
other variables, to poll more frequently. Therefore, the full functionality of the reed switch
and its respective indication on the dashboard was confirmed.

It should be noted that the topics identified with “C1” refer to the RASPBERRY
prototype and the topics identified with “C2” refer to the ESP32 prototype. The MQTT
protocol operated adequately during the tests of the connected devices. No connection
failures between the components were observed, and all commands for activating devices
and receiving the status of the variables were executed satisfactorily.

Finally, in Figure 5, we present the diagram showing the entire data flow of the
network using the MQTT protocol.

Figure 5. Diagram of the MQTT network showing in detail the communication between the
connected components.

For cost and security reasons, a residential router completely disconnected from the
internet was used. The system can be used for online monitoring using servers, for example,
but additional costs must be considered (use of private brokers, as using public brokers
may lead to data leakage) and also the quality of service (QoS) level, aiming to prevent
possible external attacks on the network.

The use of two distinct microcontrollers aims to demonstrate that the protocol can
be executed on different hardware, providing more options for evaluation concerning
cost/performance factors.

As a point of improvement, it is suggested to implement battery-powered supply
sources for all network components in cases where there is a brief power outage. Some
attention is needed to the number of devices connected to the MQTT broker to avoid
excessive latency, data loss from the topics, or connectivity issues.

4. Urban Precipitation Monitoring System
Climate change has intensified in recent years, and the lack of adequate planning

in urban areas further increases the risk of flooding. Given this context, it is crucial to
develop more effective ways to alert the population about the danger of flooding and,
simultaneously, find ways to minimize the negative impacts that these events can cause. To
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this end, this study developed a prototype of an Urban Precipitation Monitoring System
(UPMS) that integrates hardware, software, and cloud solutions to identify flood events,
alerting the community in the affected region as quickly as possible. The system uses sen-
sors connected to an Arduino microcontroller, which processes data in real-time, triggering
audible and visual on-site alarms, while sending the data to a public web server. In the
cloud, data storage and analysis are performed through Amazon Web Services (AWS),
ensuring information security and sending automatic notifications by email. This work
offers an alternative solution that helps people in a flood event make quick decisions to
protect their safety and belongings.

4.1. System-Level Description

The Urban Precipitation Monitoring System (UPMS) was developed to detect flooding
and send warning messages about imminent danger to residents in affected areas. The
system continuously monitors water levels (of a local river, for instance) and when they
reach a critical point, it automatically triggers the alarms, ensuring a fast and effective
response is taken in the region where the UPMS is installed.

Recognizing that part of the population may not have access to the internet and may
therefore be more vulnerable in risky situations, the UPMS alarms were divided into two
distinct groups, as shown in Figure 6.

Local Group: The alerts are transmitted via an LCD connected to the microcontroller,
which displays the flood level, along with an audible warning, alerting people in the area
to move away. For this group, the UPMS does not require an internet connection, ensuring
that the alert is issued directly on-site.

Mobile Group: The data are transmitted via an ethernet module connected to the
microcontroller, which creates a local web server. This server is replicated to a public
Internet Protocol (IP) web server. Using AWS cloud services, data are processed and an alert
is generated in the form of an email sent to people registered in the mobile group system.

Figure 6 also shows the design of the entire system. A physical device is placed close
to the body of water to be monitored. Such a device is composed of an Arduino UNO
board, a water-level sensor, an LCD, and a buzzer for visual and audible alarms.

In this simple PoC (Proof-of-Concept) project, the Arduino UNO board was connected
to an ethernet shield to provide easy internet access for the system. In a real-world scenario,
some form of long-range communication would likely be required, which could range
from a simple Wi-Fi connection to a nearby Access Point to a more elaborate solution like
LoRA, Sigfox, or even a satellite link. This would depend on the geographic location of the
monitored body of water and the local availability of communications technology.

A dedicated web server is deployed locally on the device and its purpose is to com-
municate (all internet stack: HTML, javascript, CSS, etc.) with another web server hosted
elsewhere in the cloud (AWS EC2 or NGROK, for production). The purpose of this server
is to provide a public IP for the users’ access.

Through the public IP, the application gets access to AWS services, like the ones
described in the sequence.

AWS IAM is a service that allows you to securely control access and permissions to
AWS resources.

AWS EventBridge is a serverless service that makes it easy to build applications by
connecting components through events.

In this work, EventBridge was used because of its Schedule functionality, which allows
you to trigger other AWS services based on time settings. Specifically, it was configured to
trigger AWS Lambda every 1 min.
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Amazon S3 is an object storage service that offers scalability, availability, security, and
performance. In this work, it was necessary to store the algorithm code in a bucket in S3.
Since the package, including the required libraries, exceeded the 10 MB limit allowed for
direct upload to AWS Lambda, it was stored in S3. AWS Lambda was configured to point
to the package’s private link in the bucket, ensuring its execution.

Figure 6. Details of the UPMS components.
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Amazon DynamoDB is a fully managed, serverless Not Only SQL (NoSQL) database
that delivers sub-ten-millisecond latency performance at any scale. In this application,
DynamoDB was chosen for its speed and easy integration with AWS Lambda. The database
is used by the algorithm to store water level status, a crucial piece of information for the
Lambda function’s business logic.

Amazon SNS enables users to receive notifications via push, email, SMS, and other
channels, making it easy to send messages to recipients subscribed to a topic. In the context
of this project, SNS acts as the output channel, sending email alerts to users subscribed to
the topic whenever the Lambda function algorithm detects a flooding situation, as defined
in the business rules.

Amazon CloudWatch monitors resources and applications running on AWS in real
time, allowing the collection and monitoring of metrics that help evaluate the performance
of these resources and applications. During the execution of this work, CloudWatch was
essential for debugging errors, in addition to providing real-time logs that ensured the
observation of application responses.

Finally, the system works in a serverless mode, meaning the entire flow of commands
and actions is coordinated through lambda functions, instead of a central server. AWS
Lambda executes code in response to events, automatically managing compute resources
without the need of servers. In this project, AWS Lambda executes code that processes
water-level data from the public web server. When triggered by EventBridge, Lambda
orchestrates the execution, interacting with other AWS services to send the alert.

The serverless operation increases the system’s scalability, allowing new services to
be added or current services to be expanded without having to change the fundamental
structure of the application.

4.2. Hardware Implementation

Figure 7 shows a detailed Proteus simulation of the hardware designed for this application.

Figure 7. Proteus simulation of the UPMS.

As mentioned earlier, the Arduino UNO board is the central piece of the system. It
executes the embedded code; activates the buzzer delivering a digital high-level voltage to
the base of the transistor Q1; sends graphic messages to the LCD; negotiates the commu-
nication protocol with the ethernet shield ENC1; and receives water-level data from the
sensor WATER1 (HESAI, Shanghai, China).
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Since the water level sensor sends analog signals (a variation in ohmic resistance
depending on the presence of water), an LC low-pass filter was provided before the signal
reaches the Arduino’s analog input port. As can be observed, the system monitors up to
four predefined water levels.

In the circuit of Figure 7, RV1 is a potentiometer used to adjust the LCD backlight.
In line with the goals of this project, all components are affordable and readily available

at local electronics stores. This ensures that even low-income communities can implement
a flood monitoring system, regardless of government support.

Receiving early warnings about floods can save lives and help preserve
people’s property.

5. Air Quality Measurement Station
Growing concerns about air quality and its impact on human health and the environ-

ment have driven the search for affordable and effective monitoring solutions, especially
for resource-limited communities that face additional challenges in accessing information
about air quality and the presence of harmful particles.

For this project, a low-cost air quality monitoring station was created, especially aimed
at underprivileged communities without access to environmental measurement data. The
idea is to understand how pollution in these places affects air quality and, consequently,
the health of the people who live there.

To this end, sensors connected to a microcontroller (Arduino) were used to measure
pollutants such as NO2, CO2, smoke, and ozone, as well as temperature and humidity,
which are also essential for good air quality.

The collected data are sent to a Raspberry Pi, which functions as a data storage system
in a local MySQL database.

The Raspberry Pi also has Grafana installed, which is software that allows the collected
data to be viewed on dashboards clearly and in real time.

This way, it will be possible to monitor air quality and take measures to improve
the environment.

This monitoring station is a practical and affordable solution that aims to provide
essential data to improve air quality and the health of people in underprivileged areas.
In addition to monitoring particle concentrations and the presence of harmful gases, the
system also aims to identify pollutants generated by human agglomerations, thus expand-
ing its usefulness in densely populated urban environments. To achieve this purpose,
different sensors compatible with the Arduino platform were used, such as the Particle
Sensor PMS5003 and the MQ Gas Sensor, allowing detailed and comprehensive monitoring.

5.1. System-Level Description

Figure 8 presents the overall structure of the system. Sensor data are acquired by an
Arduino UNO board and sent to a Node-RED instance running on a local server embedded
in the Raspberry Pi board. RPi also serves the Grafana dashboard software, version 11.4.

Figure 8. System components.
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This setup assumes that all sensor data preprocessing, packaging, and transmission
are done by the Arduino UNO system (HW and SW). While the RPi is responsible for data
storage and presentation.

The software components of the system are as follows:

• Maria DB. MariaDB is a high-performance, open source database developed by the
community as a fork of MySQL. It is widely used to store data in a variety of formats.
Its applications include operation monitoring, IoT sensor data collection, and real-
time analytics.

• Node-RED. Node-RED is a flow-based, low-code development tool designed for visual
programming. The platform is used to wire together hardware devices, APIs, and
online services, enabling developers to build IoT (Internet of Things) applications,
automation systems, and other data-driven workflows with minimal coding. Node-
RED presents a browser-based editor, allowing users to drag and drop nodes that
represent different actions.

• Grafana. Grafana is an open source platform designed for data visualization, mon-
itoring, and analytics. It allows users to query, visualize, and set alerts for metrics,
logs, and traces, regardless of where the data are stored. Grafana is commonly used to
create interactive dashboards composed of panels that display data in various forms,
such as graphs, charts, and other customizable visualizations.

The system components interact with each other through Node-RED, which orches-
trates the acquisition of data from Arduino and its integration into MariaDB. They are
installed on the Raspberry Pi board.

Figures 9 and 10 show the graphical interfaces of Node-RED and Grafana. Both are
web-based and are accessible through a local browser.

Figure 9. Node-RED web-based graphical interface.

The Node-RED module plays a crucial role in integrating and storing data collected
by sensors. Its main functions are as follows: receiving data from the measurement device,
converting this information to JSON format, filtering and formatting the data to make it
compatible with database tables, and finally storing it in the MariaDB database.

Along with the software components described above, mention should also be made
of the operating system on the Raspberry Pi and the firmware on the Arduino, which was
developed using the Arduino IDE as a programming platform.
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Figure 10. Grafana web-based graphical interface.

5.2. Hardware Implementation

Figure 11 shows the physical implementation of the Air Quality Measurement Station
in a breadboard. Here, the Arduino board is the central piece of the system, connecting and
providing power to the sensors.

Figure 11. Air Quality Measurement Station.

Below is a list of the sensors that are used in the system. All of them can be easily
purchased from local electronics stores at a low cost.

• MQ-135 (WINSEN, Guangzhou, China): To measure the concentration of gases such
as NO2 and other pollutants.

• MQ-7 (HANWEI, Zhengzhou, China): For the detection of carbon monoxide (CO).
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• MQ-5 (WINSEN, Guangzhou, China): To detect a range of gases, including smoke
and combustible gases.

• MQ-131 (WINSEN, Guangzhou, China): For ozone (O3) measurement.
• DSM501-A (SAMYOUNG, Seongnan, South Korea): To measure airborne particles

such as PM10 and PM2.5.
• AM2302 (Analog Power, San Jose, USA): To measure the temperature and humidity of

the environment.

Sensor measurements are transmitted through Wi-Fi to the server in the Raspberry
Pi board. For the interaction with the Arduino hardware, some third-party libraries were
used, like the GasSensor.lib, for instance. All libraries are widely available through the
IDE interface.

Arduino’s firmware flow diagram can be seen in Figure 12, also given in a written
format as listed below.

• Initializes all Arduino devices and sensors.
• Uses specific library functions to define conversion curve parameters.
• Starts reading the Arduino analog ports to receive the values measured by the sensors.
• Calls the functions that determine the correct concentration of each pollutant in ppm.
• Inserts the collected data into an object in bytes, which is placed in the transmission

queue to be sent to the application in Node-RED.
• After a one-minute delay, the process of reading sensor measurements is repeated in

a loop.

Arduino’s firmware is implemented in C-language.

Figure 12. Arduino’s firmware flow diagram.

5.3. Some Results

This section provides some results obtained during the tests of the system.
Data monitoring was carried out for eight days in a closed environment, using the

prototype mounted on a breadboard. The objective was to observe the variations and
performance of the device over this period. The collected measurements were used to
calculate the average of the values recorded during the eight days, which were later
exported to a spreadsheet for analysis and documentation.

Table 2 presents the results of 8 days of monitoring air quality data and Figure 13
shows the graphic for the presence of microparticles.

No further graphics are shown here to save space.
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Table 2. Final results after 8 days of monitoring.

Date PM2.5 PM10 Smoke CO NO2 O3 SO2 Temp. Umid.
(µg/m3) (µg/m3) (ppm) (ppm) (ppm) (ppm) (ppm) (°C) (%)

7 January 2024 4.09 3.49 4.87 4.87 4.81 4.87 0.00 23.6 43.0
7 February 2024 4.08 3.54 4.87 4.87 4.82 4.88 0.01 23.6 44.4

7 March 2024 4.08 3.51 4.88 4.86 4.81 4.87 0.03 23.6 43.0
7 April 2024 4.09 3.49 4.87 4.87 4.81 4.87 0.03 23.6 43.0
7 May 2024 4.09 3.49 4.88 4.87 4.81 4.88 0.04 23.7 43.0
7 June 2024 4.09 3.49 4.87 4.87 4.81 4.87 0.03 23.6 42.9
7 July 2024 4.09 3.49 4.87 4.87 4.81 4.87 0.02 19.2 43.0

7 August 2024 4.09 3.49 4.88 4.87 4.81 4.88 0.01 22.0 43.0

Figure 13. Microparticles of 2.5 µg/m3 and 10 µg/m3.

6. Mesh Video Network for Community Surveillance
Based on the enormous number of surveillance devices already connected to the inter-

net and the great adherence of people to social networks, it is possible to share images and
videos from these devices among members of the same social network—with the appropri-
ate authorizations granted by device owners—to expand the scope of the monitored area,
as well as to share information on past events.

Social networks, in combination with applications and information made available by
IoT, can provide a considerable amount of information, according to the article by Luigi
Atzori, Antonio Iera, Giacomo Morabito, and Michele Nitti [21], and they can connect
communities to a universe of ubiquitous computing, as described by Antonio M. Ortiz,
Dina Hussein, Soochang Park, Son N. Han, Noel Crespi [22] and a combination of the
Internet Of Things and Social Networks as explained in the article by Lianhong Ding, Peng
Shi, and Bingwu Liu [23]. For the development of this mesh video surveillance community,
we propose the hub shown in Figure 14.

Spring Tools 4 is used as an IDE, PostgreSQL 16.2, and Java 11 database. The software
was developed using microservice architecture with SpringBoot 3.0. All modules were
placed in Docker images to abstract the configuration needs of the machine where the hub
was to be installed. Basically, we have two modules as follows:

• WrapperGate—connection to the company’s surveillance and exposure devices and
their service interface.

• MemberWatch—membership and device permissions that the manager registered.

WrapperGate must extract and interact with the service interface of a camera con-
nected to an Orange pi i96 (Figure 15). All camera interfaces must be encapsulated by the
WrapperGate and this is responsible for abstracting the entire authentication, buffering,
and provisioning flow for users who have authorized the extraction of the device’s output
information. WrapperGate must export the interface of the device used as a web service
standard or REST.
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Figure 14. Mesh Community surveillance hub with owners and non-owners (guests).

Figure 15. Dataflow architecture of the proposed mesh community surveillance network system.

By sharing information captured by security devices, we can increase safety within
our communities by simply allowing community members to get access to these images. So
any member granted access can monitor the surroundings of the community and prevent
or inhibit threats.

We can extend this coverage to a whole city and allow authorities to join, enabling them
to act assertively and preventatively to increase the safety of communities. Also, future
image analysis algorithms can identify dangerous situations or threats to the surroundings,
receiving as data input the images captured by any device connected to the system.

7. Fleet Management Systems
This application aims to implement real-time data acquisition and analysis in fleet

management systems, focusing on distribution centers where forklifts are monitored to
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analyze their behavior, allowing the prediction of maintenance needs. This application is
listed in this paper because we appreciate the potential future applications of monitoring
vehicles used for mail delivery in small cities or communities. For such applications, some
improvements are needed to ensure the real-time data availability for users. However, at
this initial stage, we are focused on describing how telemetry works, specifically in the
acquisition and analysis of operational machine data in real time. The system uses low-cost
technologies, such as ESP32 microcontrollers and Raspberry Pi servers, to collect current
and voltage data, which are then transmitted via the MQTT protocol to a database and
visualized on dashboards, allowing for more efficient and informed management.

7.1. Technologies Applied on the Implementation

This section presents some details of the technologies applied for implementing the
telemetry system.

• ESP32 Microcontroller: Open-hardware development board based on a 32-bit dual-
core processor, 520 KB of flash memory, integrated Wi-Fi, and Bluetooth, facilitating
integration with other modules. It is used for monitoring operational machine data,
such as current and voltage, and allows communication with local servers.

• Raspberry Pi 3 B+ Server: It works as a local server that centralizes the data sent by
the ESP32 microcontrollers. It can perform basic pre-processing or filtering of the data
before sending them to the main server. It is a low-cost, compact solution ideal for
telemetry applications.

• MQTT Protocol: A lightweight and efficient communication protocol designed for real-
time communication. It is especially suitable for networks with limited or unstable
bandwidth, ensuring reliable data transmission between devices.

• Prometheus Database: A monitoring and alerting system that stores data in a time-
series format. It is ideal for continuous operational data, allowing real-time collection
and the querying of metrics.

• Grafana: An open source platform used for data visualization and analysis. It allows
the creation of interactive and customizable dashboards, making it easy to visualize
the collected data in real time via a web browser.

• Docker Compose: A tool for defining and running multi-container Docker applications.
It simplifies system service configuration and management, allowing all components
to run in an integrated manner.

• Current/Voltage Sensors: The sensors are fundamental for acquiring the data that
feed the telemetry system. The current/voltage sensor was based on a shunt resistor
and an INA226 circuit. The Shunt resistor is used to measure tge electric current by
creating a small voltage drop proportional to the current flowing through it. This
approach allows for accurate measurements and is easy to install, contributing to
the plug-and-play concept of the system. Current sensor INA226 is a digital current
monitor that communicates with the microcontroller via the I2C bus. It is responsible
for taking current and voltage readings and transmitting the collected data to the
telemetry system.
These sensors were chosen for the accuracy they offer in measurements and for their
ease of integration into the developed system.

7.2. Architecture of the Implemented Telemetry System

The architecture of the implemented system is synthesized in Figure 16.
The Sensors represent the forklifts deployed across the distribution center, equipped

with ESP32 microcontrollers. These microcontrollers monitor various operational data
from forklifts, such as current, voltage, and other critical parameters. Based on these



Big Data Cogn. Comput. 2025, 9, 19 18 of 21

readings, the system implements control measures using hour meters, which help manage
and optimize the equipment maintenance schedule.

Figure 16. Architecture of the implemented telemetry system.

Local communication involves the data collected by the ESP32 microcontrollers that
are transmitted to local servers, comprising Raspberry Pi single board computers. Com-
munication between the microcontrollers and the Raspberry Pi servers is handled via
the MQTT protocol. MQTT is a highly efficient solution for real-time communication,
particularly suited for networks with limited or unstable bandwidth.

The local servers are implemented using Raspberry Pi. Each local Raspberry Pi server
receives and centralizes data from the ESP32 microcontrollers. Additionally, the Raspberry
Pi can perform basic pre-processing or data filtering before forwarding the information to
the main server.

The main server receives data from all local servers. These data are stored using
Prometheus, a robust monitoring and alerting system designed to handle time-series data,
making it ideal for continuously monitored operational metrics.

Visualization and monitoring are facilitated via Prometheus, which processes the
collected data available for visualization. Grafana, an open source platform, is used to
create interactive, customizable dashboards, allowing real-time data visualization and
analysis through a web browser.

7.3. Initital Results

The system blocks that constitute the technological framework designed for the project,
from the measurement of signals and acquisition of information in the forklifts to the final
user dashboard, are represented below in Figure 17.

FORK-LIFT
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MONITORING 
MODULE

CURRENT SENSOR

DISPLAY

KEYPAD

LOCAL SERVER

BROKER MQTT

RASPBERRY PI 
3B+

EXPORTER 
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PC ENGENHARIA 

GRAFANA

DOCKER COMPOSE

Dashboard
Browser

Figure 17. Telemetry system architechture.
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The test applied to the system demonstrated the effectiveness of the telemetry system
developed for the real-time monitoring of operational data from machines. The main
highlights include, the Operator Panel (OP) projected as an interactive panel created to
display voltage and current readings, allowing operators to view critical information
clearly and accessibly. The display and keyboard setup were configured to use an LCD
and a matrix keypad, facilitating user interaction with the system and involving them in
data entry. Operation checklists are performed using screens, implemented to assist in
managing and monitoring operations, ensuring that procedures are followed correctly.
The combination of ESP32 microcontrollers, Raspberry Pi servers, and the Prometheus
and Grafana platforms resulted in a low-cost solution with easy integration, meeting the
monitoring needs in small environments.

Although the system proved effective, challenges related to Wi-Fi coverage and sta-
bility in large warehouses and distribution centers were identified, suggesting the need
for improvements for large-scale applications. The results indicate that the system is
viable for telemetry applications, with the potential to optimize fleet management and
equipment maintenance.

8. Conclusions
The implementations of the five applications briefly described in this paper show the

feasibility of using low-cost hardware and the MQTT protocol in IoT systems, enabling
real-time data collection and communication in resource-constrained settings. The authors
intend to show that the developed prototypes can provide affordable and effective solutions
for resource-limited communities to monitor and respond to flood events, air quality issues,
community surveillance, and the automation of simple devices at home by monitoring
analog and digital sensors as a way to help people with physical needs, fleet management,
and equipment maintenance. All those applications aim to improve the quality of life in
economically disadvantaged cities or communities.

The study demonstrates the feasibility of using Arduino microcontrollers, sensors, and
cloud services to develop low-cost and effective monitoring systems for flood events and air
quality issues, as well as for the successful implementation of low-cost IoT-based solutions
for smart monitoring and video surveillance, using devices such as ESP32 microcontrollers,
Raspberry Pi servers, and sensors.

The limitations for developing technological solutions to improve the quality of life in
our communities in the past were primarily related to the cost. Nowadays, these costs have
been reduced, and technologies such as Arduino, Raspberry Pi, and ESP32 microcontrollers
together with open source software allow people to develop their own solutions for local
needs. We hope that such projects can inspire other amateur hardware developers around
the world.
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