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Abstract: The sustainable reuse of batteries after their first life in electric vehicles requires
accurate state-of-health (SoH) estimation to ensure safe and efficient repurposing. This
study applies the systematic ProKnow-C methodology to analyze the state of the art in
SoH estimation using machine learning (ML). A bibliographic portfolio of 534 papers
(from 2018 onward) was constructed, revealing key research trends. Public datasets are
increasingly favored, appearing in 60% of the studies and reaching 76% in 2023. Among
12 identified sources covering 20 datasets from different lithium battery technologies,
NASA’s Prognostics Center of Excellence contributes 51% of them. Deep learning (DL)
dominates the field, comprising 57.5% of the implementations, with LSTM networks used
in 22% of the cases. This study also explores hybrid models and the emerging role of
transfer learning (TL) in improving SoH prediction accuracy. This study also highlights the
potential applications of SoH predictions in energy informatics and smart systems, such as
smart grids and Internet-of-Things (IoT) devices. By integrating accurate SoH estimates
into real-time monitoring systems and wireless sensor networks, it is possible to enhance
energy efficiency, optimize battery management, and promote sustainable energy practices.
These applications reinforce the relevance of machine-learning-based SoH predictions in
improving the resilience and sustainability of energy systems. Finally, an assessment of
implemented algorithms and their performances provides a structured overview of the
field, identifying opportunities for future advancements.

Keywords: state of health; battery; machine learning; ProKnow-C; public datasets; energy
informatics; smart grids; internet of things; deep learning

1. Introduction
The worldwide increase in battery usage is evident in various fields, especially in

electric vehicles. Research efforts aim to improve battery efficiency, extend lifespan, and
reduce charging time, driven by the demands of a growing global market. Alongside
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advancements in technology, vehicle battery reuse has emerged as a key area of focus.
Batteries can serve automotive purposes until their capacity drops to about 80% of the
nominal value. Beyond this point, replacement is necessary to meet the power require-
ments of vehicles [1]. However, the cells from these batteries can still be repurposed for
other applications, such as stationary energy storage systems connected to photovoltaic
generation devices. This process, known as second use, offers a sustainable way to extend
battery life.

The repurposing of a second-use battery is still a process that requires improvement
because of construction and safety difficulties. Accurate estimation of batteries’ SoH is
pivotal in advancing sustainable energy solutions. By integrating SoH predictions into
smart grids and IoT systems, it is possible to optimize energy management, enhance system
resilience, and reduce waste, aligning with broader energy informatics and sustainability
goals. With increasing computational advances, the presence of smart sensors, and the
era of big data, there has been growing research interest in applying machine-learning
(ML) algorithms of artificial intelligence [2–4]. Accurate SoH characterization is essential
for assessing cells suitable for reuse. As new datasets become available, the volume of
research connecting ML to SoH estimation continues to grow, as demonstrated by numerous
recent studies [5–9].

The estimation of the SoH of batteries is a critical step for enhancing their lifecycle man-
agement, especially in applications where reliability and performance are paramount [1].
Commonly employed methods for SoH estimation can be broadly classified into electro-
chemical approaches and model-based, data-driven, and hybrid methods [10–13]. Electro-
chemical approaches, although less common in operational environments because of their
invasive nature, offer unparalleled precision for understanding battery degradation mecha-
nisms. For instance, differential voltage analysis and differential capacity analysis [14,15]
are used to track specific aging signatures by analyzing voltage–capacity profiles during
charge/discharge cycles. These methods, combined with techniques like cyclic voltam-
metry [16] or advanced electrochemical impedance spectroscopy [17], provide detailed
insights into phenomena such as lithium plating and active material loss. Although such
methods are typically applied in laboratory settings, recent advances in sensor technology
and signal processing aim to make them more feasible for real-time SoH estimation [15].

Model-based methods rely on electrochemical or equivalent-circuit models to pre-
dict the SoH by capturing the physical and chemical behaviors of the battery [18]. Tech-
niques such as electrochemical impedance spectroscopy [19], Kalman filtering [18], and
particle filtering [20] are widely used in this category. These methods offer precise in-
sights into battery performance but often require complex parameter tuning and are
computationally intensive [18,20].

Data-driven methods, on the other hand, utilize ML and DL algorithms to analyze
large datasets and uncover patterns indicative of battery degradation [10]. These methods
excel in modeling nonlinear relationships and adapting to diverse battery chemistries and
usage patterns [10,11]. However, their reliance on large amounts of labeled data and chal-
lenges in interpretability limit their direct application in some scenarios [10,11,13]. Hybrid
methods combine the strengths of model-based and data-driven approaches, leveraging
physical models to enhance the interpretability and robustness of ML-based predictions.
In [21,22], hybrid approaches integrating equivalent-circuit models with ML techniques are
proposed, achieving a balance between accuracy and computational complexity. Despite
their promise, hybrid methods often require significant domain-specific expertise and
extensive computational resources [23].

Recent advancements in computational power and the availability of large datasets
have significantly boosted the prominence of data-driven methods, making them a corner-
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stone in SoH estimation for large-scale applications, like electric vehicles and stationary
energy storage systems [10,11]. Nonetheless, challenges persist regarding data availability,
algorithmic generalization, and system interpretability [13].

The work presented in [10] provides a list of advantages and disadvantages of using
ML algorithms, highlighting the need for open platforms for data sharing and modeling
techniques as a necessary step for the advancement of the research field. In the context
of challenges and prospects, studies [24–26], which focus on exploring DL techniques
for estimating the remaining battery life, are also noteworthy, while in [27], this theme is
reviewed from the perspective of transfer-learning usage. In [28], challenges and prospects
are addressed considering the importance of feature extraction, construction, and selection
for health state modeling. The importance of battery health characterization is presented
in [12], under the challenges of scaling second-use batteries. In [11], a relevant review
of state-of-charge (SoC) and -health estimation is presented, where the authors reveal
comparative results mainly considering neural networks, such as feedforward neural
networks (FFNNs), recurrent neural networks (RNNs), and long short-term memories
(LSTMs). Studies [29–31] also provide a review focused on comparing techniques for
studying battery degradation. In all the relevant review papers in recent years that have
been analyzed, a common gap can be pointed out: the absence of a structured methodology
that underpins the analysis portfolio and leads to the authors’ conclusions.

Although significant research has been conducted on data-driven algorithms for SoH
estimation, systematic methodologies are lacking to ensure the selection of highly relevant
studies for constructing a reliable state-of-the-art overview. The absence of such approaches
makes it difficult to identify emerging trends in the field. In this context, and given the
relevance of the topic, this work aims to explore the recent state-of-the-art panorama, from
the last 5 years, for the estimation of batteries’ SoHs. To achieve this, we start with the
explanation and demonstration of a structured and systematic methodology, known as
ProKnow-C (Knowledge Development Process Constructivist) [32], to obtain a central-
ized bibliographic portfolio on the topic of predicting the health states of batteries, using
ML. ProKnow-C is a structured process designed to assist researchers in systematically
identifying, selecting, and analyzing a bibliographic portfolio aligned with their research
objectives [32–34]. It stands out as a comprehensive approach for conducting literature
reviews because it combines quantitative and qualitative criteria, ensuring the inclusion
of highly relevant and impactful studies while minimizing biases often present in manual
selection processes [32,35]. By applying this methodology, we aim to construct a robust
bibliographic portfolio that provides a reliable foundation for evaluating the state of the
art in batteries’ SoH estimations. In this way, this paper’s contributions are summarized
as follows:

Application of the ProKnow-C Methodology: The presentation and demonstration
of the ProKnow-C systematic methodology for building a bibliographic portfolio. This
systematic approach allows for rigorous and structured literature reviews.

Characterization of the Research Scenario (State of the Art): Characterization of the
current scenario of studies in the health-state estimation of batteries, using ML by analyzing
534 relevant articles published between 2018 and 2024. This provides a comprehensive
state of the art in the current research field.

Public Dataset Compilation: Presentation, detailing, and summary of 20 public
datasets from 12 different sources, primarily from university research centers, for selecting
suitable datasets for research in SoH, SoC, and battery energy storage systems.

Machine-Learning and Deep-Learning Algorithms: Research of the main ML algo-
rithms used in studies predicting response variables related to battery degradation, includ-
ing deep-learning, hybrid, and transfer-learning models.
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Performance Analysis of SoH Estimation Models: A comprehensive performance
analysis of state-of-health estimation models, focusing on various response variables,
including SoH, remaining-useful-life, current-lifecycle, capacity, trajectory, and early-
useful-life predictions. The comparison involves 21 studies, allowing for both fair and
broader comparisons.

First Study Applying ProKnow-C to Batteries’ SoHs: This study is the first to apply
the ProKnow-C systematic review method in the context of batteries’ state-of-health esti-
mations. This pioneering application sets a new standard for structured literature reviews
in this field.

The remainder of this paper is organized as follows: Section 2 details a systematic
review using the ProKnow-C methodology, enabling rigorous and structured literature
selection, mapping the state of the art in studies and experiments and available open
datasets for the applicability of these techniques. Section 3 discusses in detail the content
analysis of the bibliographic review, as well as the analyses of the papers composing the
bibliographic portfolio on this topic, including the main databases and ML algorithms,
along with the key literary studies. Additionally, this section explores the potential practical
applications of SoH estimation in energy informatics, smart grids, and IoT systems, high-
lighting its role in enhancing energy efficiency, sustainability, and operational resilience.
Finally, Section 4 offers concluding remarks, summarizes the main results, and provides
suggestions for future research, exploring potential developments based on the integration
of artificial intelligence in various scenarios while identifying gaps and opportunities for
future research.

2. Systematic Review
The adoption of systematic processes for bibliographic surveying allows for optimizing

the quality of the material obtained on a particular topic, as it makes the process more
analytical and rigorous, thereby improving the reliability of the results found. As this is
an initial and fundamental stage for all research development, methods that increase the
robustness of a bibliographic portfolio are essential [36].

In this paper, the systematic method ProKnow-C is employed to obtain a recent
and scientifically relevant bibliographic portfolio on the use of ML in estimating SoHs of
batteries. ProKnow-C was developed at the Laboratory of Multicriteria Methodologies
in Decision Support (LabMCDA) at the Federal University of Santa Catarina (UFSC) and
patented in 2010 [32]. This method has been applied in research in various areas, and some
examples of ProKnow-C applications can be observed in [33,35,36].

Within the field of electric batteries, the ProKnow-C method was applied in [34] to
define the state of the art in lithium-ion-battery recycling. Although related, the present
study specifically focuses on analyzing the state of the art in SoH estimation using ML
methods. To date, no similar study applying ProKnow-C has been observed.

The ProKnow-C method consists of four main stages [36]:

• Selection of a portfolio of papers on the research topic: This involves defining research
keywords, searching in databases, and filtering articles based on alignment with the
research objective, citation metrics, and relevance;

• Bibliometric analysis of the portfolio: This stage examines scientific indicators, such as
the number of articles, citation counts, authors, and journals, to assess the portfolio’s
comprehensiveness and scientific impact;

• Systemic analysis: The selected articles are deeply analyzed for insights and patterns
and the identification of possible research gaps;
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• Definition of the research question and objective: The results from the previ-
ous stages are synthesized to refine the scope and formulate precise research
questions and objectives.

This paper presents the results of the first three stages of the ProKnow-C method, along
with the analysis of the selected relevant papers. These stages represent a comprehensive
state-of-the-art review of the broader research field, serving as a basis for refining the focus
to a more specific and well-defined niche.

Other well-known systematic review methods can be found in the literature and
may be used as alternatives to ProKnow-C. The PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) [37] emphasizes transparency and replicability
through strict adherence to predefined inclusion and exclusion criteria, making it widely
regarded as a gold standard in fields such as energy systems, environmental science,
artificial intelligence, and other technical domains [38–40]. However, PRISMA does not
include a bibliometric evaluation phase or tools for multicriteria decision-making, which are
central to ProKnow-C. Similarly, SALSA (Search, Appraisal, Synthesis, and Analysis) [41]
focuses more on synthesizing and analyzing evidence but lacks the portfolio alignment
capabilities of ProKnow-C, which ensures a targeted and relevant selection of articles.
Another method, Scoping Reviews, is designed to map the breadth and depth of the
literature on a topic, making it well-suited for exploratory studies or identifying gaps in the
literature [42]. Although Scoping Reviews provides a broad overview, it is less structured
in terms of bibliometric evaluation and often does not employ multicriteria tools to refine
the portfolio, which are key strengths of ProKnow-C [43].

However, as with any method, ProKnow-C has its limitations. The subjective align-
ment analysis stage, although useful for tailoring the portfolio to specific objectives, may
reduce repeatability [35]. Additionally, its reliance on citation metrics might overlook
emerging but seldom-cited studies [35].

2.1. Bibliographic Portfolio Selection

This section describes the selection of the bibliographic portfolio, initially, the set
of axes and keywords that encompass the theme of this research, i.e., the use of ML in
estimating SoH, was defined. As shown in Table 1, axis 1 corresponds to the study object,
which is batteries. Axes 2 and 3 encompass terms related to the definition of SoH and its
estimation, respectively. Axis 4 includes terms related to artificial intelligence algorithms,
machine learning, deep learning, and ensembles.

Table 1. Research axes for the bibliographic portfolio selection.

Axis 1 Axis 2 Axis 3 Axis 4

battery

state of health estimation machine learning

cycle life prediction neural network

lifetime features transfer learning

aging second use artificial
intelligence

degradation boosting

useful life quantile regression

ensemble

deep learning
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The axes were combined using the conditional logic AND, resulting in 192 combi-
nations searched in the Scopus database. Filters were established for documents of the
types of papers and reviews, searching for the keywords in titles, keywords, and abstracts,
as well as defining a research horizon of publications of up to 5 years old. The Scopus
database was selected because of the larger volume of papers returned compared to other
databases, such as Web of Science, as well as the presence of journals focused on areas
possibly related to the research. An example of a condition resulting from the combination
of axes was (TITLE-ABS-KEY(battery) and TITLE-ABS-KEY(state of health) and TITLE-
ABS-KEY(prediction) and TITLE-ABS-KEY(neural network) and PUBYEAR > 2017 and
(LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)).

Table 2 presents the adherence metrics for the keywords used in the combinations of
axes. The percentages shown quantify the portions of the total number of raw articles in
which a particular keyword was included in the performed combinations. Within axis 2
combinations, a higher adherence rate to the term “state of health” is observed, while in
axis 3 and 4 combinations, the keywords “prediction” and “neural network” stand out,
respectively. These adherence metrics suggest that within the theme of research related
to battery’s state of health, the term “state of health” tends to be more applied, often in
connection with “prediction” studies utilizing “neural networks”. It is important to note
that although some terms show low adherence rates, they remain relevant for identifying
potentially important papers that may explore emerging trends in an area of research
still underexplored.

Table 2. Adherence to the research axes.

Axis Keyword Keyword Adherence Rate

Axis 2

state of health 29.3%
degradation 20.6%

aging 17.7%
useful life 13.6%
cycle life 10.9%
lifetime 7.9%

Axis 3

prediction 36.5%
estimation 30.9%

features 24.9%
second use 7.8%

Axis 4

neural network 36.9%
machine learning 28.6%

deep learning 14.6%
ensemble 6.2%

transfer learning 5.5%
artificial intelligence 4.5%

boosting 3.4%
quantile regression 0.3%

This search was conducted on 14 January 2024, resulting in a total of 6032 papers
(with 275 papers from 2024). Although there were papers from 2024, for the calculation of
a publication horizon of up to 5 years, research from 2018 onward was considered, thus
having 6 complete years of publications for analysis plus two weeks of publications in 2024.
The papers were exported in “.csv” format in each iteration of the 192 combinations of axes.
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The initial flow proposed by ProKnow-C is presented in Figure 1. The objective of this
first stage is to significantly reduce the volume of papers in the RPD (raw paper database)
obtained from the combinations of research axes. To achieve this, filters are applied to
perform a preliminary selection of articles related to the research theme. The following
filters are applied:

Figure 1. Flow I for obtaining the bibliographic portfolio.

Redundancy Filter: This is the first step of ProKnow-C, where the RPD papers are
analyzed for duplication. In this stage, the “.csv” files resulting from the axis combinations
were processed through a Python script that performed concatenation and removal of
duplicates according to the title and publication year fields. A total of 4682 samples were
removed from the RPD.

Title Alignment Filter: This involves reading the papers’ titles to assess whether they
are aligned with the research theme, as identified by the researchers. Out of the 1350 papers
remaining after the previous filter, 722 were deemed to be not aligned with the research.
Among the papers not selected were studies focused on SoH analysis in electrochemical
contexts and laboratory experimental phases, which are considered as preliminary steps
before exploring databases and implementing ML models.

Scientific Recognition Filter: This step involves analyzing the number of citations
within the RPD. In this step, the remaining 672 papers are sorted in descending order by
citation count. According to the cumulative percentage of citations and a predefined cutoff
percentage, the portfolio is divided into two repositories: K and P. The K repository consists
of papers considered as scientifically recognized, containing 80% of the citations in the
input portfolio for this filter, totaling 85 publications in the case study. The cutoff percentage
is determined by the researchers, with [32,36] recommending a range between 70% and
90%. The P repository comprises 543 papers exceeding the defined cutoff threshold.

The second flow of article selection steps for the bibliographic portfolio, using
ProKnow-C, is presented in the flowchart in Figure 2. In this second phase of the method,
the objective is to verify the alignment of the papers remaining from the first phase with
the content presented in their abstracts. The following steps are applied:
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Figure 2. Flow II for obtaining the bibliographic portfolio.

K Repository Alignment: The abstracts of the papers considered as scientifically
recognized are analyzed by the researcher(s) to determine whether the research aligns with
the intended research objectives. If the article is aligned, it remains in the ProKnow-C flow;
otherwise, it is excluded. The 85 articles in repository K were considered as aligned with
SoH estimations using ML.

Creation of the Author Database (AD) and Repository A: This step involves identifying
the authors of the papers approved in the previous step and creating a database of authors
deemed as relevant to the research theme. The selected papers are considered as aligned
with the research theme and form repository A, which constitutes the first part of the
final portfolio.

P Repository Alignment: This step analyzes the papers that did not reach the level
of scientific recognition. These papers are divided into two categories based on their year
of publication. Articles published more than two years ago are pre-selected if one of their
authors is present in the AD corresponding to repository A. If no match is found in the
author database, the papers are excluded. The remaining papers are then evaluated for
abstract alignment, and if the expected alignment is confirmed, they are approved in the
flow and included in repository B. Recent articles are not evaluated based on the AD;
instead, their abstracts are directly analyzed for alignment, and approved papers are added
to repository B. In this case study, in the initial analysis of repository P, which contained a
total of 543 papers, 518 were recent publications from the past two years. Of the twenty-five
articles older than two years, eighteen were excluded because of the absence in the AD,
and the remaining seven were added to the group containing the 518 recent papers. Of the
525 papers analyzed in this stage, 449 were found to be aligned and formed repository B.

Creation of Repository C: This step involves combining repositories A and B to form
the final bibliographic portfolio resulting from the application of ProKnow-C. The final
portfolio comprises papers aligned with the research theme, including scientifically rec-
ognized studies in terms of citations, recent articles with potential, and publications by
researchers deemed as relevant to the field.

The union of repositories A and B forms the final bibliographic portfolio with
534 papers, representing about 9% of the initial raw paper portfolio. From this group,
a high degree of alignment with the research is expected, along with the ability to describe
the current state of the art, serving as a basis for the development of the target research.
Table 3 presents the 40 most relevant papers in terms of the number of citations in the final
portfolio. This number is based on the recommendation from [32] to evaluate an ideal vol-
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ume of between 20 and 40 papers. However, each field of research and development phase
has its own characteristics that influence the ideal volume of papers. Because this work
aims to reveal the current research scenario within SoH estimation using ML, a portfolio
approximately ten times larger than the volume recommended by [21] was constructed
to enable more robust inferences regarding the algorithms employed, datasets used, and
performances achieved.

Table 3. Top 40 papers from the bibliographic portfolio.

Title Citations Ref.

Data-driven prediction of battery cycle life before
capacity degradation 1453 [1]

Long short-term memory recurrent neural network for
remaining-useful-life prediction of lithium-ion batteries 880 [44]

Data-driven health estimation and lifetime prediction of
lithium-ion batteries: A review 749 [10]

A data-driven approach with uncertainty quantification
for predicting future capacities and remaining useful life
of lithium-ion batteries

434 [45]

Predicting the states of charge and health of batteries
using data-driven machine learning 405 [46]

Random forest regression for online capacity estimation
of lithium-ion batteries 398 [47]

Remaining-useful-life prediction for lithium-ion batteries
based on a hybrid model combining the long short-term
memory and Elman neural networks

316 [48]

Remaining-useful-life prediction for lithium-ion batteries:
A deep-learning approach 313 [49]

A data-driven auto-CNN-LSTM prediction model for
lithium-ion-batteries’ remaining useful life 291 [50]

State-of-health estimation and remaining-useful-life
prediction for the lithium-ion battery based on a variant
long short-term memory neural network

284 [51]

Machine learning applied to electrified-vehicle-batteries’
state-of-charge and state-of-health estimations: State of
the art

267 [11]

Modified Gaussian process regression models for cyclic
capacity prediction of lithium-ion batteries 262 [52]

A deep-learning method for online capacity estimation of
lithium-ion batteries 260 [53]

Machine-learning pipeline for batteries’ state-of-health
estimations 246 [54]

A neural-network-based method for RUL prediction and
SOH monitoring of lithium-ion batteries 245 [55]

A novel estimation method for the state of health of
lithium-ion batteries using a prior-knowledge-based
neural network and a Markov chain

239 [56]
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Table 3. Cont.

Title Citations Ref.

A data-driven predictive prognostic model for
lithium-ion batteries based on a deep-learning algorithm 237 [57]

Novel battery state-of-health online estimation method
using multiple health indicators and an extreme-learning
machine

232 [58]

Online capacity estimation of lithium-ion batteries with
deep long short-term memory networks 230 [59]

A review of second-life Li-ion batteries: prospects,
challenges, and issues 213 [12]

State-of-health prediction of lithium-ion batteries:
Multiscale logic regression and Gaussian process
regression ensemble

204 [60]

A novel deep-learning framework for the state-of-health
estimation of lithium-ion batteries 203 [61]

A review of state-of-health estimations and
remaining-useful-life prognostics of lithium-ion batteries 200 [13]

Synchronous estimation of state of health and remaining
useful lifetime for lithium-ion batteries using the
incremental capacity and artificial neural networks

195 [62]

Deep-reinforcement-learning-based energy storage
arbitrage with accurate lithium-ion-battery
degradation model

193 [63]

State-of-health estimation and remaining-useful-life
prediction for lithium-ion batteries using a hybrid
data-driven method

190 [64]

Transfer learning with a long short-term memory
network for the state-of-health prediction of lithium-ion
batteries

184 [65]

Battery health prediction using fusion-based feature
selection and machine learning 184 [66]

A review of non-probabilistic machine-learning-based
state-of-health estimation techniques for lithium-ion
batteries

180 [67]

A critical review of improved deep-learning methods for
the remaining-useful-life prediction of lithium-ion
batteries

159 [5]

Deep Gaussian process regression for
lithium-ion-batteries’ health prognosis and degradation
mode diagnosis

148 [68]

Model migration neural network for predicting
battery-aging trajectories 147 [69]

Toward the swift prediction of the remaining useful life
of lithium-ion batteries with end-to-end deep learning 144 [8]

Lithium-ion-batteries’ capacity estimation—A pruned
convolutional neural network approach assisted by
transfer learning

142 [7]
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Table 3. Cont.

Title Citations Ref.

Identification and machine-learning prediction of the
knee point and knee onset in capacity degradation curves
of lithium-ion cells

142 [70]

Deep-learning-based prognostic approach for lithium-ion
batteries with adaptive time-series prediction and
online validation

134 [71]

Predictive battery-health management with transfer
learning and online model correction 122 [72]

One-shot battery-degradation-trajectory prediction with
deep learning 121 [73]

Online health diagnosis of lithium-ion batteries based on
a nonlinear autoregressive neural network 117 [74]

Sorting, regrouping, and echelon utilization of large-scale
retired lithium batteries: A critical review 117 [9]

Among the papers listed in Table 3, we consider the work in [1] to be one of the
most important in the field, a cornerstone article on the use of ML in predicting batteries’
SoHs. Furthermore, it was responsible for constructing one of the first openly available
datasets and widely disseminated in subsequent studies. The decision to allow research
reproduction by keeping the dataset open certainly contributed to the increase in the
number of publications in the field, allowing researchers to overcome limitations in re-
sult reproducibility and understanding and compare approaches. For example, several
studies, [8,54,66,70,72], make use of this dataset and have a significant number of citations.

The studies conducted by [5,9–13,67] correspond to reviews, whereas [9,10,12] present
more qualitative views regarding the use of ML in studying battery degradation, pointing
out challenges and trends, types of algorithms that can be employed, and the potential
gain that data-driven inferencing techniques can have in the characterization of second-use
batteries. In [11], a more focused survey is conducted on the performance of some ML
algorithms, with a comparison between different neural network structures, including DL
architectures. Similarly, in [5], the authors also perform an analysis of DL algorithms, a
topic which is also present in [67], along with other non-probabilistic methods. In [13],
approaches are presented, along with comparisons of algorithms and their performances in
predicting SoH response variables.

The presence of public datasets is evident in 15 out of the 33 non-review papers from
Table 3, namely, studies [1,8,49–51,54,55,57,60,61,64,66,68,70,72], which utilize data from
institutions such as the Prognostics Data Repository (NASA), the Center for Advanced
Life Cycle Engineering (CALCE, the University of Maryland), the Massachusetts Institute
of Technology (MIT, which constructed the dataset in [1]), and the University of Oxford.
Further details about the datasets and techniques will be discussed later, considering
analyses of the entire portfolio obtained.

2.2. Bibliometric Analysis of the Bibliographic Portfolio

After defining the bibliographic portfolio, the bibliometric analysis stage seeks a quan-
titative analysis of the information present in the publications and their characteristics [36].
In this paper, five aspects presented in [35] were considered: (i) scientific recognition of
the papers; (ii) recognition of the authors; (iii) recognition of the journals; (iv) most used
keywords; (v) bibliographic reviews.
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2.2.1. Scientific Recognition of the Papers

The first analysis concerns the publication history within the 534 papers of the final
bibliographic portfolio, which is shown in the graph in Figure 3, in terms of annual
volume and cumulative frequency. It is noted that approximately 45% of the portfolio
corresponds to publications from 2023 (and the first two weeks of 2024), indicating the
ongoing relevance of the addressed topic and instigation for discoveries in the research
field as a trend. This trend highlights the rapid expansion of research in battery SoH
estimation, driven by advancements in artificial intelligence (AI) and the growing demand
for sustainable energy storage solutions. The alignment of research topics among authors
in recent years reflects the global focus on the reuse of lithium-ion batteries and their role
in mitigating environmental impacts associated with electric-vehicle-battery waste [12].

Figure 3. Volumetric analysis of the year of publication in the bibliographic portfolio.

The selected papers from the first week of 2024 already represent a higher volume
than the publications from 2018 and 2019, indicating that the alignment of research topics
among authors is more recent. Overall, we can observe a trend of research growth in
the area when analyzing the growth curve within the obtained portfolio. This is further
supported by the intensification of the automobile electrification process, which requires
robust methodologies to ensure effective battery health monitoring and reuse [75–77].

Another analysis performed corresponds to the scientific relevance of the papers in
the portfolio according to the year of publication, as presented in Figure 4. It is possible to
identify the top three most cited papers in the portfolio, published in 2018 and 2019. These
cornerstone studies, focused on the use of ML techniques for SoH estimation, have laid
the foundation for subsequent studies and have significantly influenced citation patterns.
The increasing density of publications over the years, coupled with a reduction in citation
intervals, indicates an accelerated dissemination and application of SoH methodologies.
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Figure 4. Analysis of the number of citations per year of publication in the bibliographic portfolio.

2.2.2. Author Recognition

The bibliographic portfolio consists of 2593 authors, of which 1967 are unique. The
analysis of the distribution of the number of authors per article, presented in Figure 5,
indicates that on average and in the median, the articles have five authors, with 30% of
the publications having six or more authors, and 98% of the publications having up to ten
authors. This median aligns with common collaborative efforts in technical and scientific
research, particularly in interdisciplinary fields, such as ML and battery SoH estimation,
where diverse expertise is critical.

Figure 5. Analysis of the number of authors per publication in the bibliographic portfolio.

The graph in Figure 6 presents the number of papers in which an author is involved.
For example, we notice that only one author is present in nine articles in the BP, while
1586 authors are present in only a single article in the BP. Approximately 80% of the authors
are present in only one publication, while only 10% of the authors are present in two or
more publications. This distribution highlights a high dispersion degree of knowledge
within the portfolio, indicative of a field still expanding and attracting a broad range of
contributors. Although this diversity enriches the field, it also emphasizes the need for
more concentrated and sustained collaborations among leading authors to build upon
foundational research.
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Figure 6. Analysis of the number of publications per author in the bibliographic portfolio.

Figures 7 and 8 provide additional insight. Figure 7 shows the top 30 most prolific
authors in the portfolio, offering a reference for identifying influential researchers in
the field. Figure 8 illustrates the connections between authors, revealing networks of
collaboration. These interconnected clusters suggest that some authors are central to
advancing SoH estimation using ML, potentially forming hubs of expertise within this
research area.

Figure 7. Top 30 authors with the highest participation in the bibliographic portfolio.

Figures 5–8 together underline the importance of collaboration networks and prolific
authors in driving innovation. Mapping these connections offers a valuable tool for re-
searchers aiming to identify trends, access seminal studies, or join active research groups in
batteries’ SoHs and ML.
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Figure 8. Authors with the most connections within the bibliographic portfolio.

2.2.3. Relevance of Journals

The distribution of journals, as presented in Figure 9, highlights the diversity of
publication venues. Journals with one publication in the portfolio were grouped into the
“Others” category. About 13% of the portfolio is present in these journals, indicating the
variety of journals covering the topic. The category “Others” comprises 72 journals. The
Journal of Energy Storage is the most represented, accounting for 15% of the total number
of publications in the portfolio, emphasizing its central role in disseminating research on
batteries’ SoHs.

Approximately 55% of the papers in the final portfolio are open access, reflecting the
increasing emphasis on making research accessible to a broader audience. Among them is
the journal Energies. The diversity of journals within this portfolio also reflects a range of
main subjects, including sustainable and renewable energies, information technology and
computing, system control and automation, computer science and engineering, electrical
and electronic engineering, and, primarily, artificial intelligence and ML. This demonstrates
how the SoH estimation of batteries is a broad research field and that researchers from
different areas are seeking solutions through artificial intelligence.

Figure 9 highlights the growing centralization of SoH research in a few key journals,
indicating a maturing field. This concentration not only facilitates a more focused dis-
semination of cutting-edge research but also provides a reliable reference for scholars and
practitioners aiming to access the most impactful findings in the area.
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Figure 9. Distribution of the number of publications by journal in the bibliographic portfolio.

2.2.4. Relevance of Keywords

The bibliographic portfolio consists of 2753 keywords, of which 1044 are unique.
Figure 10 presents the distribution of the keywords, where a significant concentration is
observed for the terms “lithium-ion battery” and “state of health”, which are, indeed, the
objects and central themes of this research. The prominence of “state of health” reinforces
its position as a pivotal concept in this study, guiding much of the research efforts in this
field. Additionally, “machine learning” appears as the fifth most frequent term, reflecting
the critical role of artificial intelligence in advancing battery SoH estimation.

The term “remaining useful life” is also notable, corresponding to one of the main
response variables in the study of the SoH. Regarding techniques, the frequent appearances
of “LSTM neural networks” and “deep learning” highlight the increasing adoption of ad-
vanced computational models. This reflects the growing sophistication in predictive analyt-
ics, as researchers seek more accurate and robust approaches to model battery degradation.

Figure 11 depicts the distribution of keyword connections within the selected papers.
The pattern of terms mirrors the previous distribution, showing how central keywords,
such as “state of health” and “machine learning”, branch out across diverse contexts. This
interconnectedness illustrates the multidisciplinary nature of SoH research, bridging fields
like energy systems, artificial intelligence, and sustainability.
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Figure 10. Distribution of keywords in the bibliographic portfolio.

Figure 11. Number of connections of keywords within the bibliographic portfolio.

Figures 10 and 11 together emphasize the importance of keywords in structuring and
advancing the field. Although the dominant terms reflect the current research focus, the
variety and connections among keywords indicate the evolving boundaries of the field and
its responsiveness to emerging challenges and technologies.

3. Content Analysis
The bibliographic portfolio of 534 papers, following the ProKnow-C methodology

analyzed in the previous section, was explored to characterize the current scenario in the
field of SoH estimation in batteries. First, we outline the survey of public databases found
in the bibliographic portfolio, followed by the techniques and algorithms implemented
in the papers. The algorithms are further analyzed according to categories of modeling,
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including DL, algorithmic hybridization, and transfer learning. A situational overview
of the performance is highlighted, and key review studies in the field are analyzed. This
section concludes with implications for energy informatics and intelligent systems.

3.1. Portfolio Overview

Except for review papers, the objectives of the studies are directly related to establish-
ing various forms, either algorithmically or through different approaches, to perform SoH
estimation. In the presentation of the most cited papers in Table 3, it is noted that there is a
significant focus on testing different types of ML algorithms and how their methods can
increase the accuracy of SoH estimation. This is the case with the study presented in [44]
with long short-term memory (LSTM) neural networks, the combination of LSTM and
extreme-learning-machine (ELM) neural networks presented in [48], or the use of ensemble
methods, such as bagging in decision trees, through the random forest (RF) algorithm
in [47]. In summary, papers with the highest number of citations in the portfolio typically
focus on increasing estimation accuracy through experiments related to algorithms.

Compatible studies can also be highlighted, such as the study presented in [78],
which compares the LSTM, FNN, and CNN neural network algorithms, where the LSTM
algorithm achieved the best performance, with an MAPE (mean absolute percentage error)
of around 0.5%, compared to about 1.5% for FNN and 2% for CNN networks. In [79],
the authors compare different probabilistic and time-series algorithms (ARIMAX, linear
quantile regression, bootstrap multiple linear regression, and Bayesian bootstrap multiple
linear regression), with the best results obtained from the Bayesian bootstrap multiple
linear regression algorithm’s quantile regression, which achieved MAPE values ranging
from 0.2% to 1%. Other highlighted comparative studies include [66,80].

The concept of feature engineering, which includes manipulation and selection, is a
relevant theme presented in the portfolio, as much of the algorithm’s performance lies in
the stress of creating features that provide discrimination for predictions. Study [81] intro-
duces an autonomous feature selection method, which is based first on an initial selection
considering correlation coefficients, tree algorithms, and a variance factor, followed by an
iterative method for feature combination. In [82], an analysis of feature engineering for SoH
estimation is presented, evaluating different techniques for feature creation and selection,
such as univariate selection by Pearson correlation, feature importance, feature clustering,
genetic algorithms, and sequential feature selection. The authors concluded that the use of
sequential selection presented a good balance between performance and computational
cost. Feature tests were evaluated using SVM and ExtraTree-based algorithms. Other
studies focusing on features can be consulted in [81,83–96].

The quest for automating modeling processes was found in the development of an
autoML approach in [97]. The framework built is capable of performing the entire modeling
cycle using Bayesian optimization, eliminating the need for researchers from other fields
to spend time on laborious steps, such as feature extraction, construction, and selection.
The results obtained yielded MAEs (median absolute errors) ranging from about 0.02% to
0.05% for SoH estimation.

Interpretability model analyses were found in studies [98,99], based on the use of a
technique known as SHAP (Shapley Additive Explanations). SHAP is based on a theoretical
game approach that seeks to explain the output of any ML model by quantifying how each
feature impacts the model’s prediction [100,101]. Other model interpretability approaches
were also addressed in [102–105].

Approaches related to hyperparameter tuning were also found in the portfolio. In [106],
the authors explore the Bayesian optimization of hyperparameters in a combination of
DCNN and LSTM neural networks, achieving an RMSE (root-mean-square error) of 0.0061
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for SoH estimation. In study [107], a pipeline optimization based on a tree and genetic
algorithm is presented. Study [108] also uses a genetic algorithm as a means of parameter
optimization, presenting a framework for SoH estimation, with errors of about 2%.

The use of sensors for capturing battery conditions implies tabular data; however,
studies were found in the portfolio, which analyze the implementation of image-based
algorithms for SoH prediction. In [109], the authors propose a method capable of using
only one charge and discharge cycle for SoH prediction, using image processing of current
and voltage curves. Using transfer learning, the authors achieved an MAPE in the range of
10%. Transfer learning is also used in the algorithm based on battery curve image analysis
in [110]. The authors analyze images of one cycle, five cycles, and ten cycles, with MAEs of
about fifty, fifty-five, and sixty cycles, respectively, using eight pretrained networks, such
as ResNet and GoogleNet. Other studies using algorithms from the computer vision area
were found in [111–113].

Regarding the cell technologies employed, almost all the publications correspond
to lithium-ion technology, among which we can highlight LFP (lithium iron phosphate),
LCO (lithium cobalt oxide), NCA (lithium nickel cobalt aluminum oxide), and NMC
(lithium nickel manganese cobalt oxide) battery types. Only three studies made use of
battery technologies different from lithium. Study [114] analyzes the estimation of the
SoHs of removed lead–acid batteries, aiming for reuse. In [115], lead–acid batteries are also
analyzed, and the authors develop an SoH prediction model using LSTM networks based
on charge curve data. In [116], the authors use a neural network to predict the remaining
lifespan of a zinc-ion battery.

3.2. Literature Review

Within the article selection process, 38 papers correspond to review papers, and they
are presented in Table 4. The papers are essentially divided into reviews with qualitative
analyses (e.g., trends, challenges, and general overviews), as well as papers more focused on
a specific set of techniques and surveying performances and the extraction of degradation
features and health indicators. In all the analyzed papers, there was no indication of the
use of a methodological process for selecting the bibliographic portfolio, highlighting the
importance of this work as a point of evolution within the research field.

Table 4. Review papers in the bibliographic portfolio.

Title Year Cited Ref.

Data-driven health estimation and lifetime
prediction of lithium-ion batteries: A review 2019 749 [10]

Machine learning applied to
electrified-vehicle-batteries’ state-of-charge and
state-of-health estimation: State of the art

2020 267 [11]

A review of second-life Li-ion batteries: prospects,
challenges, and issues 2022 213 [12]

A review of state-of-health estimations and
remaining-useful-life prognostics of
lithium-ion batteries

2021 200 [13]

A review of non-probabilistic
machine-learning-based state-of-health estimation
techniques for lithium-ion batteries

2021 180 [67]
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Table 4. Cont.

Title Year Cited Ref.

A critical review of improved deep-learning methods
for the remaining-useful-life prediction of
lithium-ion batteries

2021 159 [5]

Sorting, regrouping, and echelon utilization of
large-scale retired lithium batteries: A critical review 2021 117 [9]

Big training data for artificial-intelligence-based
Li-ion diagnoses and prognoses 2020 100 [117]

Machine learning in state-of-health and
remaining-useful-life estimation: Theoretical and
technological developments in battery
degradation modeling

2022 88 [118]

State-of-health prediction of lithium-ion batteries
based on machine learning: Advances
and perspectives

2021 81 [119]

A critical review of improved deep convolutional
neural networks for multi-timescale state prediction
of lithium-ion batteries

2022 75 [30]

A review of deep-learning approaches to predict the
states of health and states of charge of
lithium-ion batteries

2022 69 [26]

A critical review of online
battery-remaining-useful-lifetime
prediction methods

2021 62 [120]

Artificial neural networks, gradient boosting, and
support vector machines for electric-vehicle-batteries’
state estimation: A review

2022 57 [31]

State-of-health estimation and remaining-useful-life
assessment of lithium-ion batteries: A
comparative study

2022 43 [121]

A review of modern machine-learning techniques in
the prediction of the remaining useful life of
lithium-ion batteries

2023 34 [122]

Overview of machine-learning methods for
lithium-ion-batteries’ remaining-useful-lifetime
prediction

2021 33 [123]

A review of machine-learning-based state-of-charge
and state-of-health estimation algorithms for
lithium-ion batteries

2023 33 [124]

Transfer learning for batteries’ smarter-state
estimation and aging prognostics: Recent progress,
challenges, and prospects

2023 32 [27]

Review of “gray box” lifetime modeling for
lithium-ion batteries: Combining physics and
data-driven methods

2022 31 [125]
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Table 4. Cont.

Title Year Cited Ref.

Deep-learning-enabled state-of-charge,
state-of-health, and remaining-useful-life estimations
for smart battery management systems: Methods,
implementations, issues, and prospects

2022 26 [24]

Explainability-driven model improvement for SOH
estimation of lithium-ion batteries 2023 20 [126]

State estimation models of lithium-ion batteries for
battery management systems: Status, challenges, and
future trends

2023 20 [127]

State-of-charge, remaining-useful-life, and
knee-point estimations based on artificial intelligence
and machine learning for lithium-ion EV batteries: A
comprehensive review

2022 19 [128]

The development of machine-learning-based
remaining-useful-life predictions for
lithium-ion batteries

2023 17 [129]

Comprehensive review of battery state estimation
strategies using machine learning for battery
management systems of aircraft propulsion batteries

2023 16 [130]

A comprehensive review of lithium-ion-batteries’
state-of-health prognosis methods combining aging
mechanism analysis

2023 11 [131]

Research progress and application of deep learning
in remaining-useful-life, state-of-health, and battery
thermal management of lithium batteries

2023 11 [132]

A review of the prediction of the health state and
serving life of lithium-ion batteries 2022 7 [6]

Specialized deep neural networks for battery health
prognostics: Opportunities and challenges 2023 7 [25]

Machine-learning techniques’ suitability to estimate
the retained capacity in lithium-ion batteries from
partial charge/discharge curves

2023 7 [133]

Deep feature extraction in lifetime prognostics of
lithium-ion batteries: Advances, challenges,
and perspectives

2023 6 [28]

Comparing deep-learning methods to predict the
remaining useful life of lithium-ion batteries 2022 4 [134]

Machine-learning-based remaining-useful-life
prediction techniques for lithium-ion-battery
management systems: A comprehensive review

2023 2 [29]

Feature–target pairing in machine learning for
battery health diagnosis and prognosis: A
critical review

2023 2 [135]
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Table 4. Cont.

Title Year Cited Ref.

Research on methods for extracting aging
characteristics and the health status of lithium-ion
batteries based on small samples

2022 1 [136]

Electric-vehicle-batteries’ capacity degradation and
health estimation using machine-learning techniques:
A review

2023 0 [137]

Open access dataset, code library, and benchmarking
deep-learning approaches for state-of-health
estimations of lithium-ion batteries

2024 0 [138]

Figure 12 shows that the number of review article publications within the portfolio
has been increasing over the years, albeit with a considerably lower coefficient compared
to that of the overall volumetric analysis. There appears to be a difference between 2022
and 2023, suggesting a potential trend toward stability in the coming years.

Figure 12. Volumetric analysis of the publication year of review papers in the BP.

The most cited review article in the portfolio is the study presented in [10], which
examines big-data techniques regarding their feasibility and cost effectiveness in dealing
with battery health in real-world applications. The methods are categorized, and advan-
tages and limitations are identified. The authors begin by presenting methods that do not
involve model training, such as the differential analysis of charge and discharge profiles,
stress tests, and thermal analyses. Then, they review the use of ML for SoH estimation,
highlighting the fundamental step of feature extraction. They categorize these features
into three main groups: (i) model-fitted features, which depend on tests like internal re-
sistance and are not easily accessible by sensors in a BMS (battery management system);
(ii) processed external features, which are the results of differential analyses; and (iii) direct
external features, which are all the variables that a sensor can collect within the battery
system and can generate a large number of variables. The authors also briefly review
non-probabilistic ML methods, such as artificial neural networks, SVMs, and probabilistic
models, like Gaussian regression.

The non-probabilistic methods are the central theme of the study presented in [67],
where five types of ML algorithms for batteries’ SoH estimation are reviewed: linear
regression, SVM, KNN, neural networks, and ensemble methods. The study comparatively
outlines the advantages and applicability of the different methods from a theoretical
standpoint. Three aspects are considered for comparing the methods: the algorithm’s
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performance based on five performance metrics (RMSE, MAE, AE, APE, and MaxE), the
publication trend obtained by counting the number of publications in the last ten years, and
the training modes considering feature extraction and selection. The study used 144 papers
considered as relevant and published up to 10 years before (with the reference year being
2021), however, without revealing the criteria used for obtaining the portfolio. The authors
conclude that neural-network-based methods and SVMs are still under research and that
DL methods have shown great potential in SoH estimation under complex battery-aging
conditions, especially when big data are available, and that ensemble methods, like random
forest, can be considered as an emerging alternative for balancing data size and accuracy.

Regarding the use of ML techniques in second-life batteries, the study presented
in [9] reviewed the status and challenges of large-scale second-life applications. The
authors discuss methodologies for classifying and regrouping retired batteries. They
propose a rapid, multilevel, and multidimensional classification method for large-scale use.
The classification method involves first solving a one-dimensional classification problem
to obtain similar batteries in terms of their reaction stage. Then, a multidimensional
classification is performed based on capacity and internal resistance, where usage scenarios
are evaluated, for example, to determine whether the priority use is for energy or power
supply. The second life is also discussed in the review presented in [12], which analyzes
economic, technical, and environmental factors related to the use of second-life lithium-ion
batteries, including SoH estimation methods.

Regarding the reviews from this year, it is worth highlighting the study in [27], which
presents the first systematic review of transfer-learning applications in the field of battery
management, focusing on batteries’ state estimations and aging prognoses. The authors
provide the state of the art in terms of principles, algorithmic structures, advantages, and
disadvantages. For SoH estimation, a survey of papers in the field showed that transfer
strategies focus on problem domain adaptation and the fine-tuning of the final model. The
difficulties pointed out by the authors in using transfer learning lie in the low labeling
degree of the data, which depends on the data acquisition capability at shorter intervals in
a BMS. This is exacerbated by the low frequency of actual battery capacity testing during
usage, especially for SoH estimation purposes.

3.3. Public Databases

Analyzing the non-review papers present in the bibliographic portfolio, it was found
that about 41% make use of proprietary and closed datasets, without sharing repositories
for use in other studies. On the other hand, a significant and increasingly growing portion
of papers conduct investigations using public datasets, comprising 59% of the non-review
papers in the portfolio. As emphasized in [11], advancements in the field of ML for
estimating batteries’ SoHs rely on information sharing so that new research can develop
and result comparisons can occur, thereby allowing inferences about techniques that may
enhance estimation accuracy. This scenario demonstrates this sharing trend, leading to
faster and more voluminous developments in the research field. It is worth noting that fair
comparative analyses of models/approaches also require the sharing of data splits used for
training and testing/validation; only then can comparisons be made when dealing with
the same population.

Figure 13 demonstrates that author-provided datasets have the highest frequency
of use. However, the majority of these datasets are complementary to public datasets.
Among these, the highlight goes to the use of data provided by the Prognostics Center
of Excellence Dataset Repository [139], from NASA, which accounts for 51% of the open
datasets used in the surveyed portfolio. The dataset presented in [1], developed at the
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Massachusetts Institute of Technology (MIT), also constitutes an important data source in
the surveyed papers.

Figure 13. Volumetric analysis of datasets used in the papers of the bibliographic portfolio.

The evolution of the proportion of closed and public datasets is presented in Figure 14.
It is noticeable that the volume of applications using public datasets starts to become
predominant from 2022, with the use of public datasets being about 3.2 times higher in 2023.
This increase could be because of the research trend of using multiple datasets, and because
more data sources are available, the application of public datasets would tend to increase.
Therefore, to mitigate this effect, Figure 14 considers only the Boolean condition of whether
a public dataset was used or not, and the results are similar, with the number of papers
using public datasets in 2023 being about 2.3 times higher than those using closed datasets.

Figure 14. Annual evolution in the BP of papers using public datasets versus closed datasets.
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Through an evaluation according to the dataset origin, Figure 15 illustrates the evolu-
tion of the dataset usage over the years in the bibliographic portfolio (BP). The increasing
use of NASA datasets is noticeable, followed by the usage of the MIT [1], Oxford, and
CALCE datasets. Other public datasets with even lower levels of usage are also identified
in the portfolio: the Beijing Institute of Technology (BIT), Carnegie Mellon University,
Stanford University, Cambridge University, the University of Hawaii, Purdue University
(UL-PUR), the University of Bologna (UNIBO), and the Center for Electrochemical Energy
Storage Ulm–Karlsruhe (CELEST).

Figure 15. Annual evolution, in the BP, of the origin of public and author datasets.

Table 5 provides a summary of each of the public datasets found in the portfolio,
as well as their characteristics and in which papers they were used. In total, 12 sources
of public data were revealed, corresponding to 20 different datasets, all using lithium
technology as the main source of the analyzed batteries. The synthesis of these databases
constitutes important information for future studies, as it facilitates the selection and design
of new studies on SoHs.

In the NASA repository, two datasets are available for developing models aimed at
estimating SoHs. The first dataset contains 34 lithium-ion 18,650 cells with a capacity
of 2 Ah, undergoing processes of charging, discharging, and impedance measurements.
Various temperatures are used, including 4 ◦C, 24 ◦C, and 44 ◦C, with the charging process
consisting of constant current until 4.2 V, followed by constant voltage until reaching the
cutoff current. Different discharge regimes are adopted. The second dataset corresponds
to 28 lithium-ion 18,650 cells with a capacity of 2.2 Ah that are continuously cycled with
randomly generated current profiles. Reference charge and discharge cycles are also
performed after a random fixed interval. In total, the cells are divided into seven equal
groups, with the cycles occurring at a temperature of 40 ◦C. In five groups, the charging
cycle follows the traditional constant current–constant voltage (CC-CV) pattern, followed
by randomly selected discharges. In two groups, both the charging and discharging
processes are selected randomly. The cycling processes of the cells are terminated when
their capacity reached either 80% or 50% of the initial capacity, depending on the type of
test defined. Both NASA datasets are provided in “.mat” extension files.
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Table 5. Datasets included in the bibliographic portfolio.

Dataset Cell Type Features No. of Cells Refs. Link

NASA
Li-ion 18650 V, I, T, IR, time 34 [49–51,54,55,57,60,61,64,66,68,78–

81,87,91,96,97,106,107,140–314]
https://www.nasa.gov/intelligent-systems-division/discovery-

and-systems-health/pcoe/pcoe-data-set-repository/Li-ion 18650 V, I, T, time 28

MIT LiFePO4/graphite V, I, T, IR, time 124 [1,8,54,66,70,72,83,92,94,99,102,104,110,111,140,
144,199,205,253,269,277,299,315–359] https://data.matr.io/1/projects/5c48dd2bc625d700019f3204

CALCE

LiCoO2 V, I, T, time 15 [54,64,66,150,157,159,161,162,170,172–
175,180,182,187,192–195,200,206,208,209,215,

217,220,222,228,229,231,236,240,244,249,263,264,
269,270,282,288,312,328,330,344,347,360–369]

https://calce.umd.edu/battery-dataLiCoO2 V, I, T, IR, time 12

LiCoO2 V, I, time 16

OXFORD

Li-ion 18650 V, I, T, time 8

[54,88,92,99,140,142,152,156,157,179,180,194,201,
209,225,235,263,269,277–

279,281,293,295,311,313,330,348,354,369–383]

https://ora.ox.ac.uk/objects/uuid:
03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac

Li-ion 18650 V, I, T, time 6 https://ora.ox.ac.uk/objects/uuid:
9aae61af-2949-49f1-8ad5-6aea448979e5

Li-ion 18650 V, I, T, IR, time 12 https://ora.ox.ac.uk/objects/uuid:
de62b5d2-6154-426d-bcbb-30253ddb7d1e

BIT LFP/graphite V, I, T, time 77 [325,335,384–388] https://data.mendeley.com/datasets/kw34hhw7xg/2

STANFORD NMC
(INR21700M50T) V, I, T, IR, time 10 [165,389] https://osf.io/qsabn/?view_only=2a03b6c78ef14922a3e244f3

d549de78

CELEST

NCA V, I, T, IR, time 66

[369,389–392] https://zenodo.org/records/6405084NMC V, I, T, IR, time 55

NCA + NMC V, I, T, IR, time 9

UL-PUR NCA V, I, T, IR, time 35 [194] https://www.batteryarchive.org/index.html

UNIBO Li-ion 18650 V, I, T, IR, time 27 [212] https://data.mendeley.com/datasets/n6xg5fzsbv/1

CAMBRIDGE LCO/graphite V, I, T, IR, time 12 [393] https://zenodo.org/records/3633835

University
of Hawaii

System

LFP/graphite V, I, T, time 6
[394] https://data.mendeley.com/datasets/y8nstxmdrg/1

NMC V, I, T, time 6

CARNEGIE Li-ion 18650 V, I, T, time 30 [395] https://kilthub.cmu.edu/articles/dataset/eVTOL_Battery_
Dataset/14226830/1

https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://data.matr.io/1/projects/5c48dd2bc625d700019f3204
https://calce.umd.edu/battery-data
https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac
https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac
https://ora.ox.ac.uk/objects/uuid:9aae61af-2949-49f1-8ad5-6aea448979e5
https://ora.ox.ac.uk/objects/uuid:9aae61af-2949-49f1-8ad5-6aea448979e5
https://ora.ox.ac.uk/objects/uuid:de62b5d2-6154-426d-bcbb-30253ddb7d1e
https://ora.ox.ac.uk/objects/uuid:de62b5d2-6154-426d-bcbb-30253ddb7d1e
https://data.mendeley.com/datasets/kw34hhw7xg/2
https://osf.io/qsabn/?view_only=2a03b6c78ef14922a3e244f3d549de78
https://osf.io/qsabn/?view_only=2a03b6c78ef14922a3e244f3d549de78
https://zenodo.org/records/6405084
https://www.batteryarchive.org/index.html
https://data.mendeley.com/datasets/n6xg5fzsbv/1
https://zenodo.org/records/3633835
https://data.mendeley.com/datasets/y8nstxmdrg/1
https://kilthub.cmu.edu/articles/dataset/eVTOL_Battery_Dataset/14226830/1
https://kilthub.cmu.edu/articles/dataset/eVTOL_Battery_Dataset/14226830/1


Energies 2025, 18, 746 27 of 77

The dataset developed in [1] consists of 124 LiFePO4/graphite cells with a capacity
of 1.1 Ah and a nominal voltage of 3.3 V. The cells were cycled at a temperature of 30 ◦C,
being charged with a fast-charging policy of one or two steps, in the C1(Q1)–C2 format.
Here, C1 and C2 represent the first and second constant current steps, respectively, and
Q1 is the state of the charge (SoC, %) at which the currents change. The second current
step terminates at 80% of the SoC, after which the cells charge at 1C CC-CV. The charging
step can occur in a range of 72 different protocol profiles, with the discharge maintaining
the same pattern across all the cycles. The cycles are terminated when the cell’s capacity
reaches 80% of its initial capacity. All the data are provided in “.mat” format.

The Center for Advanced Life Cycle Engineering (CALCE) at the University of Mary-
land provides three datasets of LiCoO2 batteries, including two sets of prismatic cells and
one set of pouch cells (16 cells). The first dataset, consisting of 15 cells, features cells with
capacities of 0.9 Ah and 1.1 Ah, cycled at a controlled temperature of 23 ◦C, with standard
CC-CV charging cycles. Different depths and rates of discharging/charging are evaluated.
The cycles are performed until reaching 80% of the nominal capacity. The data are provided
in multiple “.txt” files. The second dataset, comprising 12 cells, follows a similar format to
the first one, with cells of 1.35 Ah undergoing tests at different temperatures (25 ◦C, 35 ◦C,
45 ◦C, and 55 ◦C), and various charge and discharge profiles. The data are also provided
in “.txt” format. The third dataset contains 16 pouch cells, each with a capacity of 1.5 Ah,
where the data were generated to assess the effects of partial charge and discharge cycles
on battery capacity degradation. The temperature in all the tests is controlled at 25 ◦C. The
data are provided in “.mat” format.

The Battery Laboratory Intelligence at the University of Oxford provides three datasets
that can be explored in modeling. The first corresponds to long-term battery aging tests,
featuring eight cells of 740 mAh, maintained at a controlled temperature of 40 ◦C. The
cells were subjected to a CC-CV charging profile, followed by a discharge profile obtained
from the Artemis urban profile. The data are stored in “.mat” format. The second dataset
contains data from six cells of 16 Ah, collected from a one-year experiment, following
real-world usage profiles of grid-connected battery applications. The data are provided in
“.csv” format. The third dataset contains long-term data from 12 cells of 3 Ah, aiming to
study the influence of the usage history dependence on the cell degradation. Four groups
of three cells each were subjected to combined charging profiles comprising fixed calendar
periods and cyclic aging applied in various orders. Cells in groups 1 and 2 were subjected
to one day of cycling followed by five days of aging at C/2 and C/4, respectively. Cells in
groups 3 and 4 were subjected to two days of cycling followed by ten days of aging at C/2
and C/4, respectively. The tests are conducted at a controlled temperature of 23 ◦C. The
data are available in “.txt” format.

The dataset presented by the Beijing Institute of Technology (BIT), as introduced in
study [384], consists of 77 batteries of 2.4 Ah cycled with fixed or arbitrary current profiles.
Twenty-two batteries were cycled with fixed current profiles for both charging (1C, 2C, or
3C) and discharging (1C, 2C, or 3C). Fifty-five batteries were cycled with arbitrary usage
profiles for charging (following a uniform distribution between 1C, 2C, or 3C and randomly
changing every five cycles) and a specified discharge current (3C). The data are provided
in “.csv” format.

The dataset from Stanford University, collected at the Stanford Energy Control Labora-
tory, was created in 2022 and is presented in [396]. It consists of 10 LiNiMnCoO2/graphite
cells, model INR21700-M50T, with a capacity of 4.85 Ah. For the tests, the cells were
maintained at 23 ◦C and charged according to the CC-CV protocol, with charging rates
of C/4, C/2, 1C, and 3C. The discharge aging experiments were designed to simulate a
typical driving pattern of electric vehicles in the form of the Urban Dynamometer Driving
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Schedule (UDDS), reducing the battery’s SoC from 80% to 20%. The files are provided with
“.xlsx” and “.mat” extensions.

Three datasets are provided by the Center for Electrochemical Energy Storage
Ulm–Karlsruhe. They originated in 2022, using sixty-six NCA cells (3.5 Ah) in dataset
1, fifty-five NCM cells (3.5 Ah) in dataset 2, and nine NCA-NCM cells (2.5 Ah) in dataset 3.
The cells in datasets 1 and 2 were maintained at controlled temperatures of 25 ◦C, 35 ◦C,
and 45 ◦C, while the cells in dataset 3 were kept at 25 ◦C. The charging process of the
cells followed the CC-CV protocol, with rates of 0.25 C, 0.5 C, and 1C, and with constant
discharges of 1C. The files are provided with a “.csv” extension.

The dataset provided by Underwriters Laboratories, Inc. at Purdue University consists
of 35 NCA cells. Of this dataset, 21 cells are cylindrical-type lithium-ion 18650, cycled
at 0.5C between 2.7 and 4.2 V (0–100% SoC) at room temperature, to various levels of
capacity reduction (10%, 15%, and 20%). The remaining 14 cells are pouch-type, cycled at
1C between 2.7 and 4.2 V (0–100% SoC), also at room temperature, with capacity reductions
of 10–20%. The data are provided in “.csv” format.

The data provided in July 2023 by UNIBO Powertools corresponds to cycling experi-
ments of 27 batteries, considering the use of batteries from different manufacturers, cells
with various nominal capacities, and cycling conducted until the end of the cell’s life,
producing data at different stages of the lifespan. Three types of tests were conducted: (i) a
standard test, where the battery was discharged at a current of 5 A in the main cycles; (ii) a
high-current test, where the battery was discharged at a current of 8 A in the main cycles;
(iii) a pre-conditioned test, where the battery cells are stored in environments at 45 ◦C for
90 days before conducting the test. The charging process is CC-CV at 1.8 A and 4.2 V (a
100 mA cutoff point). The data are provided in “.csv” format.

The dataset provided by Cambridge University corresponds to the work developed
in [397], where continuous charge and discharge cycles were conducted on 12 lithium-ion
cells Eunicell LR2032 (LiCoO2/graphite), with a capacity of 45 mAh. The cells were cycled
at controlled temperatures of 25 ◦C, 35 ◦C, and 45 ◦C. Each cycle consists of a CC-CV charge
at a rate of 1C up to 4.2 V and a CC discharge at a rate of 2C up to 3 V. Electrochemical
impedance spectroscopy (EIS) is measured at nine different stages of charging/discharging
during each even-numbered cycle, in the frequency range from 0.02 Hz to 20 kHz, with
an excitation current of 5 mA, following a 15 min open-circuit period at 0% SoC and 100%
SoC. The dataset is provided in multiple “.txt” files.

The data from the University of Hawaii System correspond to two datasets, each
composed of nine cells, one of type LFP, with a capacity of 1.1 Ah (APR18650M1B), and the
other of type NMC, with a capacity of 3.5 Ah (INR18650MJ1). The cells were cycled under
different protocols, with temperature controlled between −15 ◦C and 55 ◦C. Charging
processes were of the CC-CV type, with rates of C/25 and 1C, and continuous discharges
of C/25, C/5, and 1C. The details about the dataset construction can be found in [398], with
the data being provided with a “.txt” extension.

The dataset provided by Carnegie Mellon University consists of 30 cylindrical cells
Sony–Murata 18650 VTC-6 (3 Ah) cycled at a controlled temperature of 25 ◦C. The charging
and discharging configurations varied, with durations ranging from 400 s to 1000 s. The
data are available in “.csv” format.

3.4. Techniques and Algorithms

A survey of the techniques addressed in the papers of the bibliographic portfolio,
as presented in Table 6, revealed the use of 81 distinct techniques by the authors. With
161 applications, LSTM-type DL neural networks account for approximately 22% of the
techniques evaluated in the portfolio, followed by CNN-type DL networks, with 12%, and
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with SVM, GPR, and simple artificial neural networks (ANNs) each accounting for about
5%, which together result in almost 50% of the techniques evaluated in the non-review
papers of the portfolio. Although a set of only five algorithms represents almost half of the
evaluations, forty-one algorithms are evaluated only once in these studies, representing
about 6% of the techniques evaluated, with a representation of 11% when techniques im-
plemented up to three times were grouped, corresponding to fifty-six algorithms. Figure 16
presents the distribution of the techniques found in the portfolio.

Table 6. Frequency of machine-learning techniques presented in the bibliographic portfolio.

Algorithm Frequency Type Algorithm Frequency Type

LSTM 161 Neural
Network

Regressive
matching
network

1 Neural
Network

CNN 86 Neural
Network Bls 1 Time Series

SVM 38 Kernel
Method

Semi-
Markov
model

1 Statistical
Method

GPR 37 Statistical
Method

Autoregression
nested

sequence
1 Statistical

Method

ANN 34 Neural
Network Automl 1 -

RANDOM
FOREST 32 Decision

Tree

Quantile
regression

forest
1 Quantile

Regression

LINEAR
REGRESSION 32 Linear

Model

Sparse
Bayesian
learning

1 Statistical
Method

ELM 31 Neural
Network Ssel 1 Time Series

RNN 29 Neural
Network

Survival
model 1 Survival

Model

DNN 27 Neural
Network Atbls 1 Time Series

GRU 26 Neural
Network Tdnn 1 Neural

Network

XGBOOST 19 Decision
Tree

Transformer
neural

network
1 Neural

Network

GRADIENT
BOOSTING

TREE
16 Decision

Tree
Unsupervised
learning 1 Unsupervised

BPNN 12 Neural
Network

Unsupervised
neural

networks
1 Neural

Network
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Table 6. Cont.

Algorithm Frequency Type Algorithm Frequency Type

LIGHTGBM 11 Decision
Tree Vgg11 1 Neural

Network

MLP 10 Neural
Network

Vision
trans-

former
network

1 Neural
Network

FFNN 8 Neural
Network

Quantum
clustering 1 Clustering

RVM 7 Kernel
Method

Deep rein-
forcement
learning

1 Neural
Network

TCN 6 Neural
Network Pknn 1 Neural

Network

NAR 5 Time Series Narxnn 1 Time Series

RIDGE
REGRESSION 5 Linear

Model Densenet 1 Neural
Network

ENN 5 Neural
Network Dgnn 1 Neural

Network

ADABOOST 5 Decision
Tree

Dilated
residual
network

1 Neural
Network

GRAPH
NEURAL

NETWORK
4 Neural

Network Dsmtnet 1 Neural
Network

DECISION
TREE 4 Decision

Tree Efficientnet 1 Neural
Network

ELASTIC NET
REGRESSION 3 Linear

Model Ddan 1 Neural
Network

KNN 3 Neighborhood
Method

Extreme
deep fac-
torization
machine

1 Neural
Network

RBFNN 3 Neural
Network Fcnn 1 Neural

Network

ARIMA 3 Time Series Dcn 1 Neural
Network

DBN 3 Neural
Network

Fuzzy
clustering 1 Clustering

DCNN 3 Neural
Network

Generalized
additive
model

1 Statistical
Method

DELM 3 Neural
Network Alexnet 1 Neural

Network

LINEAR
QUANTILE

REGRESSION
2 Quantile

Regression Googlenet 1 Neural
Network
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Table 6. Cont.

Algorithm Frequency Type Algorithm Frequency Type

LOGISTIC
REGRESSION 2 Linear

Model Dbnn 1 Neural
Network

EXTRATREES 2 Decision
Tree Crnn 1 Neural

Network

BOOTSTRAP
MULTIPLE

LINEAR
REGRESSION

2 Linear
Model

Induced
ordered

weighted
averaging

1 Statistical
Method

BNN 2 Neural
Network

Lasso
regression 1 Linear

Model

K-MEANS 2 Clustering Cdtsgann 1 Neural
Network

RESNET 2 Neural
Network Capsnet 1 Neural

Network

CATBOOST 2 Decision
Tree

Genetic
models 1 Genetic

Algorithm

BMA 1 Statistical
Method

Figure 16. Frequency of ML algorithms presented in the BP.

When analyzing the algorithms implemented in the portfolio, grouped according
to their category of origin, the use of techniques based on neural networks reaches the
significant mark of 66% of the implementations, followed by decision-tree-based algorithms
(including tree ensembles), with about 12%. Kernel methods, probabilistic statistical models,
and linear regressions each account for approximately 6% of the implementations found.
This analysis is presented in Figure 17.



Energies 2025, 18, 746 32 of 77

Figure 17. Frequency of groups of ML algorithms presented in the BP.

Excluding the use of neural networks, tree-based methods have gained considerable
representation in the portfolio. Notably, ensemble methods, such as boosting, were em-
ployed in [83,272,399], along with implementations of popular boosting algorithms, like
XGBoost in [262,400,401], LightGBM in [402–404], and CatBoost in [405,406], which have
gained prominence in the field of tabular data prediction in recent studies. The use of
bagging can be identified in the implementation of decision-tree ensembles, such as random
forest, as explored in studies [47,161,407]. Kernel-based methods, such as SVMs, can be
classified as algorithms belonging to a classical and dated approach [408], yet they were
considerably analyzed in the portfolio in studies [323,409,410]. The use of classical and
highly interpretable linear regression was explored in 45 studies, among which, notable
studies include those presented in [1,80,146,238,321,411,412].

Another approach of relative importance corresponds to algorithms that are a part
of statistical methodologies, where, out of the 43 implementations in the portfolio,
37 corresponded to the use of the GPR algorithm, with examples of implementations and
analyses found in [329,369,413–415]. As presented below, the GPR algorithm demonstrated
significant usage in hybrid methodologies, ranking sixth in usage within the portfolio
when considering hybridized algorithms. Another point worth noting is the interpretation
conducted by studies that sought to analyze degradation through classical time-series
approaches, as presented in [79], which implements the ARIMAX (AutoRegressive Inte-
grated Moving Average Model with eXogenous input) method, and in study [416] using the
ARIMA (AutoRegressive Integrated Moving Average Model) method. The NAR (Nonlinear
Autoregressive) model is explored in [64].

The evolution of algorithmic categories throughout the horizon comprising the biblio-
graphic portfolio is presented in Figure 18. It is worth noting that the authors consistently
focused on exploring neural network implementations throughout the entire time horizon,
with the difference from other categories maintaining a growing profile. It is possible to
observe a significant increase in the implementation of decision-tree-based algorithms from
2022 to 2023. The implementation of linear models has also been gaining momentum,
mainly because of the comparisons that these simpler models can offer compared to more
complex algorithms. Additionally, they present greater interpretability of variables and,
therefore, of the modeling [6,104,417]. The use of time-series techniques has remained
relatively constant in the portfolio, which, in contrast to the increasing volume of publica-
tions per year, indicates that the percentage of implementation compared to that of other
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categories has been decreasing. Algorithms related to clustering, quantile regression, the
neighborhood method, and unsupervised learning were more recently implemented within
the portfolio, between 2022 and 2023.

Figure 18. Evolution of algorithmic implementation in the BP by category.

Going deeper into the analysis of the two main categories of algorithms implemented
in the portfolio, the graphs in Figure 19 depict the distributions of neural network and
decision-tree algorithms. In the neural network category, following the observations from
the overall analysis, there is a dominance of LSTM and CNN networks, followed by simple
neural networks, algorithms based on well-known networks, such as extreme-learning
machines and RNNs. In the decision-tree algorithms, there is a predominance of ensemble
bagging using the random forest algorithm, accounting for 35% of the tree implementations
in the portfolio, followed by boosting algorithms, such as XGBoost, GBT, LGBM, and
Adaboost. A detailed exploration of this type of ensemble can be observed in battery
degradation studies, with approximately 60% of the tree implementations in the portfolio.

  
(a) (b) 

Figure 19. Frequencies of implemented algorithms: (a) decision trees; (b) neural networks.

When analyzing the evolution of techniques implemented in the portfolio, as depicted
in Figure 20, it is noticeable that the use of LSTM networks predominates throughout almost
the entire analyzed time horizon. The use of CNN networks began to gain prominence from
publications in 2021. The use of the random forest became the third most implemented
technique in the portfolio’s works in 2023; however, the use of simple ANNs showed a
sharp decline in the last year. Implementations of the SVM method seem to be decelerating,
with a decrease in usage in 2021 and maintaining the number of implementations in 2023
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compared to 2022. The use of GRU networks also appears to be trending, becoming the
fourth most implemented algorithm in 2023. As a baseline and comparative algorithm,
linear regression also demonstrates an increase in the number of implementations over the
horizon. Other algorithms that seem to be experiencing a growing exploration are DNN,
GPR, and XGBoost.

Figure 20. Evolution of algorithmic implementation in the bibliographic portfolio.

The evolution of the portfolio’s main neural network implementations is presented in
the graph in Figure 21. As previously highlighted, the use of LSTM and CNN networks
is at the forefront of authors’ research in the field, with LSTM networks being the main
technique in this category from 2020 onward, and CNNs gaining prominence from 2021. It
is noteworthy to highlight some recent jumps in implementations in the portfolio, from
2022 to 2023, such as the exploration of GRU, DNN, ELM, and BPNN techniques. It is
striking to see the resurgence of the exploration of more classical networks, such as BPNNs,
by authors in the field.

Figure 21. Evolution of neural network algorithmic implementation in the BP.

Because of its secondary prominence in the portfolio, we also present the evolution of
decision-tree-based algorithms in Figure 22. The evolution of the random forest algorithm’s
usage over the years can be observed, with a notable increase in 2023, and the possible
replacement of GBT boosting by newer versions, such as XGBoost and LightGBM.
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Figure 22. Evolution of decision-tree-based algorithmic implementation in the portfolio.

3.4.1. Deep-Learning Models

ML, as a subfield of artificial intelligence, employs algorithms and statistical techniques
to construct predictive models. Neural networks represent a subset of ML algorithms that
have seen their structural complexity increase over time, in tandem with computational
advancements. This complexity primarily manifests in the augmentation of intermediate
layers within networks, enhancing the algorithm’s ability to discern patterns and giving
rise to a subfield known as DL algorithms [418,419]. Traditional ML algorithms often
outperform DL methods in scenarios of limited data availability. However, as datasets
expand, traditional ML algorithms tend to reach performance plateaus, while DL algorithms
demonstrate significant superiority over other learning strategies [418].

The expected potential of DL techniques can be observed in the bibliographic portfolio.
Within the set of techniques belonging to neural-network-based algorithms, 307 papers
using DL algorithms were identified, representing a significant 57.5% of the portfolio. This
demonstrates a strong trend within this research field. DL algorithms were considered
as those with more than three hidden layers. Although there is no consensus among
authors and researchers in the field regarding the exact number of layers required to
characterize a network as DL, some references consider this number of layers to indicate
“light” DL networks, while “heavy” DL networks can have from tens to hundreds of
hidden layers [420,421].

A comparative analysis of the evolution of the proportion of DL usage in neural
network algorithms is shown in Figure 23. There is noticeable stability in the proportion,
discounting the factor of publication volume in the early years, which settles between 80%
and 90% in the last 3 years of the portfolio.
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Figure 23. Proportion of DL implementation in neural network techniques in the portfolio.

The volume of DL technique implementations in the portfolio is presented in Table 7,
with a visual proportion overview shown in Figure 24. In Table 7, the term “Frequency”
refers to the number of implementations recorded for each technique. Papers in the
portfolio may present more than one implementation within the same study. Together,
LSTM and CNN techniques account for 60% of the implementations, while RNN, DNN,
and GRU techniques stand out, with implementations in more than 20 papers each. In total,
23 techniques were implemented only once.

Table 7. Survey of DL techniques implemented by authors in the bibliographic portfolio.

Algorithm Frequency Algorithm Frequency Algorithm Frequency

LSTM 161 RESNET 2 PKNN 1

CNN 86 ELM 2 DBNN 1

RNN 29 BPNN 2 DSMTNET 1

DNN 27 EFFICIENTNET 1 DCN 1

GRU 26 CRNN 1 DDAN 1

ANN 10

VISION
TRANS-

FORMER
NETWORK

1

DEEP REIN-
FORCE-
MENT

LEARN-
ING

1

MLP 8 VGG11 1 DELM 1

TCN 6
TRANSFORMER

NEURAL
NETWORK

1 GOOGLENET 1

ENN 5 TDNN 1 DENSENET 1

FFNN 5 BNN 1 ALEXNET 1

GRAPH
NN 4 CAPSNET 1 EDFM 1

DBN 3

REGRESSIVE
MATCH-

ING
NETWORK

1
DILATED

RESIDUAL
NETWORK

1

DCNN 3 CDTSGANN 1 FCNN 1
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Figure 24. Distribution of techniques in DL implementations in the portfolio.

The evolution of the main DL algorithms implemented in the portfolio is presented
in Figure 25, which shows that the most implemented algorithm is the LSTM network.
In addition to the rising trends of LSTM and CNN networks, we again highlight the
recent implementation trends of DNN and GRU algorithms, as well as the first relevant
implementations of the DCNN algorithm, found in 2023, which combines characteristics of
DNN and CNN networks.

Figure 25. Evolution of DL algorithmic implementation in the BP.

In [44], which is the main DL publication according to the citation count, the authors
employ a hybrid LSTM-RNN model to capture long-term information regarding the rela-
tionship between a battery’s capacity and its degradation, emphasizing that such a dual
approach is recommended to avoid overfitting issues. Another work utilizing a hybrid
technique based on LSTM is presented in [48], using an Elman neural network (ENN).
The concept of transfer learning, which involves the use of neural networks trained and
fine-tuned in large datasets and then fine-tuned on their final layers in a specific dataset to
transfer knowledge to another problem, is discussed in [65], which implements an LSTM
network. Other examples of studies using LSTMs can be found in [51,59,422,423].

Regarding relevance by citation count, the main studies using DL are presented in
Table 8, where it is notable that the use of LSTM is present in six out of the ten studies.
Another interesting point is the use of a hybrid approach by the publications, using two
DL algorithms in this case. The table also highlights the datasets used by the authors, with
half the publications utilizing public data Additionally, the table includes a marking to
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indicate whether the implementation was hybrid, where more than one algorithm was
used to determine the same prediction.

Table 8. Main publications in the portfolio with DL implementation.

Algorithm Hybrid Dataset Title Year Cited Ref.

LSTM,
RNN Yes Author

Long short-term memory recurrent neural
network for remaining-useful-life prediction

of lithium-ion batteries
2018 880 [44]

LSTM,
GPR Yes Author

A data-driven approach with uncertainty
quantification for predicting future

capacities and remaining useful life of
lithium-ion batteries

2021 434 [45]

LSTM,
ENN Yes Author

Remaining-useful-life prediction for
lithium-ion batteries based on a hybrid
model combining the long short-term
memory and Elman neural networks

2019 316 [48]

DNN No NASA
Remaining-useful-life prediction for

lithium-ion batteries: A deep-learning
approach

2018 313 [49]

CNN,
LSTM Yes NASA

A data-driven auto-CNN-LSTM prediction
model for lithium-ion-batteries’ remaining

useful life
2021 291 [50]

LSTM No NASA

State-of-health estimation and
remaining-useful-life prediction for

lithium-ion batteries based on a variant long
short-term memory neural network

2020 284 [51]

DCNN No Author A deep-learning method for online capacity
estimation of lithium-ion batteries 2019 260 [53]

DNN No

CALCE,
NASA,

MIT,
OXFORD

Machine-learning pipeline for batteries’
state-of-health estimations 2021 246 [54]

LSTM No NASA
A neural-network-based method for RUL

prediction and SOH monitoring of
lithium-ion batteries

2019 245 [55]

PKNN No Author

A novel estimation method for the states of
health of lithium-ion batteries using a

prior-knowledge-based neural network and
a Markov chain

2019 239 [56]

The five most recent studies with DL implementation in the bibliographic portfolio
are presented in Table 9. The publications correspond to the year 2024, which, in total,
had 17 publications on the subject in the first two weeks of the year (the total number of
portfolio publications in 2024 was 21). The five highlighted papers make use of public
datasets (16 out of 17 in total for the year), with two publications implementing a hybrid
approach with DL (seven out of seventeen in total for the year), including the use of a
decision-tree-based algorithm.



Energies 2025, 18, 746 39 of 77

Table 9. Recent publications in the portfolio with DL implementation.

Algorithm Hybrid Dataset Title Year Cited Ref.

GCN No NASA,
OXFORD

State-of-health and
remaining-useful-life predictions of

lithium-ion batteries with a conditional
graph convolutional network

2024 2 [179]

RNN No MIT
Jellyfish-optimized recurrent neural

network for state-of-health estimations
of lithium-ion batteries

2024 2 [336]

LSTM No NASA,
CALCE

Remaining-useful-life predictions of
lithium Batteries based on a

CNN–Mogrifier LSTM-MMD
2024 1 [192]

MLP, GRU Yes NASA,
CALCE

An MLP–mixer and mixture of expert
models for remaining-useful-life

predictions of lithium-ion batteries
2024 0 [220]

RF, GRU Yes NASA
State-of-health estimations for

lithium-ion batteries using a random
forest and a gated recurrent unit

2024 0 [221]

3.4.2. Hybrid Models

Hybrid ML models combine different ML techniques and algorithms to enhance
prediction performance by leveraging the strengths of each method while compensating
for their individual weaknesses [48,424]. Within the bibliographic portfolio, a total of
135 publications have implemented this approach. The evolution of hybrid model usage in
the portfolio is depicted in Figure 26. As shown, it can be inferred that the use of hybrid
approaches in SoH estimation is a recent field of exploration, with a significant increase
in implementations in 2023. Considering the volume of portfolio publications, the use of
hybrid approaches represents approximately 30% of the papers surveyed, a jump of nearly
50% compared to 2022, where it was present in about 18% of publications. In the first two
weeks of 2024, a total of nine papers with hybrid approaches were published.

Figure 26. Evolution of hybrid algorithmic implementation in the BP.
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The most utilized techniques in the hybrid modeling approach also correspond to
the use of DL networks, such as LSTM and CNN, with a considerable advantage, with
74 and 51 implementations, respectively, as indicated in Figure 27. Other DL algorithms,
such as GRU and RNN, are also notable, for example, in [232,233,381,425]. Other classical
algorithms, such as SVM and GPR, found in [149,426], and decision-tree-based algorithms,
like RF, XGBoost, and LightGBM, present in [80,221,427], are also noteworthy.

Figure 27. Frequency of techniques addressed in papers with hybrid algorithms in the BP.

The evolution of the implementations of the main algorithms is presented in Figure 28.
It is possible to observe the increases in the implementations of LSTM and CNN networks,
in line with previous results, and the recent evolution of the use of GRU and RF algorithms,
with a peak in usage in 2023.

Figure 28. Evolution of hybrid algorithmic implementation in the bibliographic portfolio.
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Figure 29 presents the found combinations resulting from the analysis of hybrid
algorithms in the portfolio. The primary combination occurs with the LSTM and CNN
networks, with 27 implementations in the portfolio. Algorithms that appear individually in
the survey reflect either a hybrid approach (e.g., the integration of different configurations
of the same algorithm, such as combining a 2-dimensional CNN with a 3-dimensional
CNN), or methodologies that incorporate filters (e.g., the Kalman filter) and optimization
algorithms as a part of their design. In total, 65 papers presented combinations of algorithms
that were implemented only once in the portfolio, indicating that many researchers still
evaluate different approaches of hybrid models.

Figure 29. Combinations of algorithms found in papers with a hybrid approach in the BP.

The combinations of each algorithm in the portfolio are presented in Table 10, allowing
for the identification of hybrid approaches, evaluated by the authors, within the portfolio,
which can serve as a starting point for testing hybrid models in new research. A visualiza-
tion of these combinations is shown in Figure 30, where centers of algorithmic connections
can be observed, revolving around LSTM, CNN, RF, and GPR techniques. As demonstrated
in Table 10 and Figure 30, LSTM networks exhibit a considerable range of combinations with
other algorithms, including decision-tree, statistical, kernel, neighborhood, and clustering
algorithms, as well as other neural network architectures.

Table 10. Connections between algorithms in papers with a hybrid approach in the BP.

Algorithm Algorithmic Connections

LSTM

DCNN, FFNN, CNN, ANN, ENN, DNN, TCN, RNN,
XGBOOST, BMA, GRAPH NEURAL NETWORK, SVM,
GPR, DBN, GRU, RANDOM FOREST, FUZZY
CLUSTERING, BPNN, LINEAR QUANTILE
REGRESSION, MLP, RESNET, ADABOOST

RANDOM FOREST

ANN, NAR, LINEAR REGRESSION,
GRADIENT-BOOSTING DECISION TREE, GPR,
LIGHTGBM, XGBOOST, LSTM, SVM, RBFNN, RIDGE
REGRESSION, KNN, GRU, EXTRATREES, ELM

SVM
ARIMA, DECISION TREE, ELM, LSTM, GPR, RBFNN,
RANDOM FOREST, RIDGE REGRESSION, LINEAR
REGRESSION, GRU, RNN
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Table 10. Cont.

Algorithm Algorithmic Connections

GRU CNN, DNN, LSTM, RNN, TCN, MLP, RANDOM
FOREST, ELM, LINEAR REGRESSION, SVM

CNN LSTM, DNN, GRU, GRAPH NEURAL NETWORK,
FCNN, GPR, FFNN, MLP, TCN, RESNET

GPR

LOGIC REGRESSION, ANN, LSTM, LINEAR
REGRESSION, RANDOM FOREST,
GRADIENT-BOOSTING DECISION TREE, CNN, SVM,
RBFNN, RIDGE REGRESSION

XGBOOST

LSTM, LIGHTGBM, MLP, LASSO REGRESSION,
RANDOM FOREST, KNN, RIDGE REGRESSION,
GRADIENT-BOOSTING DECISION TREE,
EXTRATREES, LINEAR REGRESSION

LINEAR REGRESSION
RANDOM FOREST, GRADIENT-BOOSTING
DECISION TREE, GPR, LIGHTGBM, XGBOOST,
RIDGE REGRESSION, EXTRATREES, SVM, GRU

RIDGE REGRESSION
GPR, SVM, RBFNN, RANDOM FOREST, LIGHTGBM,
XGBOOST, GRADIENT-BOOSTING DECISION TREE,
EXTRATREES, LINEAR REGRESSION

LIGHTGBM

MLP, XGBOOST, LASSO REGRESSION, RANDOM
FOREST, RIDGE REGRESSION,
GRADIENT-BOOSTING DECISION TREE,
EXTRATREES, LINEAR REGRESSION

GRADIENT-BOOSTING
DECISION TREE

LINEAR REGRESSION, RANDOM FOREST, GPR,
LIGHTGBM, XGBOOST, RIDGE REGRESSION,
EXTRATREES

MLP LIGHTGBM, XGBOOST, LASSO REGRESSION, CNN,
LSTM, VISION TRANSFORMER NETWORK, GRU

EXTRATREES
LIGHTGBM, XGBOOST, RIDGE REGRESSION,
RANDOM FOREST, GRADIENT-BOOSTING
DECISION TREE, LINEAR REGRESSION

TCN LSTM, GRU, DNN, DCN, CNN, RESNET

ELM RVM, SVM, DBN, GRU, RANDOM FOREST

DNN CNN, LSTM, GRU, K-MEANS, TCN

RNN LSTM, NAR, TDNN, GRU, SVM

RBFNN K-MEANS, GPR, SVM, RANDOM FOREST, RIDGE
REGRESSION

ENN ARIMA, LSTM, ADABOOST

RESNET CNN, LSTM, TCN

ANN LSTM, RANDOM FOREST, GPR

NAR RNN, TDNN, RANDOM FOREST

LASSO REGRESSION LIGHTGBM, MLP, XGBOOST

ARIMA SVM, ENN

TDNN NAR, RNN

RVM ELM, BLS

DBN LSTM, ELM



Energies 2025, 18, 746 43 of 77

Table 10. Cont.

Algorithm Algorithmic Connections

KNN RANDOM FOREST, XGBOOST

K-MEANS RBFNN, DNN

GRAPH NEURAL
NETWORK CNN, LSTM

FFNN LSTM, CNN

ADABOOST ENN, LSTM

LINEAR QUANTILE
REGRESSION LSTM

LOGIC REGRESSION GPR

BMA LSTM

DCN TCN

BLS RVM

BPNN LSTM

FUZZY CLUSTERING LSTM

FCNN CNN

DECISION TREE SVM

DCNN LSTM

VISION TRANSFORMER
NETWORK MLP

Figure 30. Connections between algorithms in papers with a hybrid approach in the BP.

Tables 11 and 12 present, respectively, the most relevant and most recent studies with
hybrid modeling present in the bibliographic portfolio.
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Table 11. Key publications in the portfolio with hybrid model implementation.

Algorithm Dataset Title Year Cited Ref.

LSTM, RNN Author
Long short-term memory recurrent neural

network for remaining-useful-life
predictions of lithium-ion batteries

2018 880 [44]

LSTM, GPR Author

A data-driven approach with uncertainty
quantification for predicting future

capacities and the remaining useful life of
lithium-ion batteries

2021 434 [45]

LSTM, ENN Author

Remaining-useful-life prediction for
lithium-ion batteries based on a hybrid
model combining the long short-term
memory and Elman neural networks

2019 316 [48]

CNN, LSTM NASA
A data-driven auto-CNN-LSTM prediction
model for lithium-ion-batteries’ remaining

useful life
2021 291 [50]

Logic
Regression,

GPR
NASA

State-of-health prediction of lithium-ion
batteries: Multiscale logic regression and

Gaussian process regression ensemble
2018 204 [60]

GRU, CNN NASA
A novel deep-learning framework for

state-of-health estimation of lithium-ion
batteries

2020 203 [61]

NAR, RF Author

State-of-health estimation and
remaining-useful-life prediction for
lithium-ion batteries using a hybrid

data-driven method

2020 190 [64]

LSTM, RNN Author
Deep-learning-based prognostic approach

for lithium-ion batteries with adaptive
time-series prediction and online validation

2020 134 [71]

3-CNN,
2-CNN MIT

A machine-learning prediction method of
lithium-ion-battery life based on charge

processes for different applications
2021 113 [315]

CNN, LSTM,
DNN

NASA,
CALCE

Remaining-useful-life assessment for
lithium-ion batteries using a

CNN-LSTM-DNN hybrid method
2021 108 [236]

Table 12. Most recent publications in the portfolio with hybrid model implementation.

Algorithm Dataset Title Year Cited Ref.

SVM, RNN NASA
CALCE

Data-driven transfer-stacking-based state-of-health
estimation for lithium-ion batteries 2024 14 [270]

RF, GRU NASA State-of-health estimation for lithium-ion batteries
using a random forest and a gated recurrent unit 2024 0 [221]

CNN, GPR Author
Probabilistic lithium-ion-batteries’ state-of-health

predictions using convolutional neural networks and
a Gaussian process regression

2024 0 [414]
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Table 12. Cont.

Algorithm Dataset Title Year Cited Ref.

CNN,
LSTM, TCN,

RESNET
Author

A machine-learning framework for
remaining-useful-lifetime prediction of Li-ion

batteries using diverse neural networks
2024 0 [428]

CNN, GRU NASA
Lithium-ion-batteries’ state-of-health estimations

using a hybrid model based on a convolutional neural
network and a bidirectional gated recurrent unit

2024 0 [223]

Among the most relevant studies, the use of LSTM or CNN was present in seven out
of the ten papers. This predominance is expected, given the previous findings; however, the
presence of these algorithms in the hybrid models for the highly cited papers also demon-
strates that their implementation leads to promising results in SoH estimation. A similar
perspective occurs in the analysis of the most recent studies, indicating that researchers
continue to develop hybrid models around these neural network architectures. As shown
further ahead, the performance of studies that employed hybrid approaches sometimes
yielded superior results compared to the use of simple models, as was the case in [335],
which used GPR with LSTM and managed to reduce MAPE levels by approximately 50%
compared to those in [1].

3.4.3. Transfer-Learning Models

Transfer-learning (TL) techniques involve the process where a model trained in a
particular primary dataset is reused as a starting point to train a new model in a new
dataset [429–431]. In this case, the knowledge from the model obtained from the first
dataset can be transferred to the model with the second dataset. This technique is especially
useful when the second dataset is limited in volume or when training a model from scratch
presents a high computational cost [429–431]. This principle is widely used in tasks in the
areas of computer vision and natural language processing [429–431].

Given that data for estimating the health state of a battery require experimental effort
(e.g., the programming of generalist tests, cycling processes until their end of life, and
data collection), which, in turn, takes time, the use of TL within this research field can be
useful for leveraging the volume of available open data, as well as aggregating new data
collected in a cycle of studies, and, thus, transferring learning to more customized datasets.
This idea was found in 42 publications, as shown by the annual evolution in the graph
in Figure 31 (two publications belong to the year 2024). The emergence of this learning
method only occurred in 2020 within the portfolio, with the years 2022 and 2023 being the
main publication years.

The survey of ML techniques employed in these publications mainly identified the
use of LSTM networks, which accounts for approximately 40% of the implementations,
as shown in Figure 32. Also noticeable is the use of decision-tree-based techniques,
such as in [354] with Adaboost implementation, and well-known DL networks in com-
puter vision tasks, such as GoogleNet and ResNet, present in [110]. The key publica-
tions using TL and the most recent publications found in the portfolio are presented
in Tables 13 and 14, respectively.
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Figure 31. Evolution of TL algorithm implementation in the bibliographic portfolio.

Figure 32. Frequency of techniques addressed in papers with TL algorithms in the BP.

Table 13. Key publications in the portfolio with TL implementation.

Algorithm Dataset Title Year Cited by Ref.

LSTM AUTHOR
Transfer learning with long short-term
memory networks for state-of-health

prediction of lithium-ion batteries
2020 184 [65]

CNN AUTHOR

Lithium-ion-batteries’ capacity
estimation—A pruned convolutional
neural network approach assisted by

transfer learning

2021 142 [7]

GRU MIT
Predictive battery health management

with transfer learning and online
model correction

2021 122 [72]

LSTM MIT
Battery health estimation with

degradation pattern recognition and
transfer learning

2022 102 [316]
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Table 13. Cont.

Algorithm Dataset Title Year Cited by Ref.

KERNEL RIDGE
REGRESSION NASA

State-of-health estimation of lithium-ion
batteries based on semi-supervised

transfer component analysis
2020 100 [238]

LSTM AUTHOR

A flexible state-of-health prediction
scheme for lithium-ion-battery packs with
a long short-term memory network and

transfer learning

2021 81 [432]

LSTM NASA,
CALCE

Forecasting the state-of-health of
lithium-ion batteries using a variational

long short-term memory
with transfer learning

2021 65 [249]

LSTM AUTHOR

A hybrid transfer-learning scheme for
remaining-useful-life prediction and

cycle-life-test optimization of different
formulations of Li-ion power batteries

2021 60 [433]

CNN BIT
Real-time personalized health status

prediction of lithium-ion batteries using
deep transfer learning

2022 42 [385]

LSTM CALCE
A long short-term memory

neural-network-based Wiener process
model for remaining-useful-life prediction

2022 39 [362]

Table 14. Most recent publications in the portfolio with TL implementation.

Algorithm Dataset Title Year Cited by Ref.

SVM, RNN NASA, CALCE
Data-driven transfer-stacking-based

state-of-Health estimation for
lithium-ion batteries

2024 14 [270]

LSTM NASA

Transfer-learning-based
remaining-useful-life prediction of

lithium-ion batteries considering the
capacity regeneration phenomenon

2024 0 [296]

- -
Transfer learning for batteries’ smarter
state estimation and aging prognostics:

Recent progress, challenges, and prospects
2023 32 [27]

CAPSNET AUTHOR
Novel image-based rapid RUL prediction

for Li-ion batteries using a capsule
network and transfer learning

2023 9 [109]

CNN STANFORD, BIT

Voltage-relaxation-based state-of-health
estimation of lithium-ion batteries using

convolutional neural networks and
transfer learning

2023 4 [389]

3.5. Performance Analysis

To evaluate the performance obtained in the bibliographic portfolio, the MIT dataset,
which was produced in [1], was selected. This dataset was chosen because the authors
recorded the sets of cells used in the training, testing, and validation splits, thus allowing
other studies to replicate the sets and conduct a fair comparison of results. However, most
of the analyzed publications chose to perform different splits, making a direct comparison



Energies 2025, 18, 746 48 of 77

difficult. In these cases, the comparisons are empirical, and there is an associated probability
of a particular approach being better than another. Among the arguments used are concerns
related to the quality of the data from some cells, as well as supposed bias in the training
split based on differences in the distribution of the cycles used in [1]. Another point that
drew attention was cases where authors performed splits of training, testing, and validation
while keeping data samples from all the cells in each set, which impacts the reliability of
the results presented, as per the performances in the articles highlighted below.

Table 15 summarizes the RUL (remaining-useful-life) prediction performances in
publications that had the same validation set, totaling five papers. The validation sets are
referred to as the 1◦ Test and 2◦ Test by the authors in [1]. The 1◦ Test includes batteries
under the same cycling conditions as those of the training set, while the 2◦ Test corresponds
to batteries with a different usage profile. Notably, the performance gain achieved in [335]
is highlighted, where the MAPE errors in both test sets are reduced by over 50% compared
to that of the baseline study [1]. This improvement was achieved using the same 100 cycles
of information for the prediction and implementing a hybrid model using the LSTM DL
technique along with the GPR algorithm. However, such significant results were not found
in the use of the LSTM-CNN combination in [333], where a range of errors similar to that of
the baseline study [1] was observed despite employing more complex techniques. In [317],
an increase in performance is evident with a hybrid approach involving neural networks,
linear regression, and RF, using a reduced set of 80 cycles. These findings suggest that
efforts in algorithmic selection do not necessarily guarantee higher performance, and steps
such as feature construction and selection may represent an even more relevant stage
in research.

In Table 16, the rest of the performance survey with the MIT dataset, conducted in
the bibliographic portfolio, is presented. Here, the authors did not maintain the same
modeling and validation splits, and there are variations in the target variables. Therefore,
all the comparisons made may exhibit significant bias. The targets described in the table are
presented to maintain the nomenclature adopted by the authors. The target’s “early battery
lifetime”, also referred to in studies as the “early cycle life”, aims to determine the total
number of cycles a battery will present based on data from the first cycles of a battery. The
“end of life” in the analyzed studies is related to determining the total number of cycles
considering data from the last cycles, without necessarily knowing the entire battery history.
Therefore, it is generally accompanied by models that determine the remaining number
of cycles (RULs) and/or the current cycle. The “capacity” target was linked to studies
that used regression models in predicting time series (“capacity trajectories”), where the
evolution of the battery capacity over time is obtained or the prediction on a short horizon,
such as the discharge capacity in the next cycle, can be used for SoH updates.
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Table 15. Prediction performance of studies using the same samples for validation with MIT dataset.

Algorithm
1◦ Test 2◦ Test

Cycles Title Year Cited Ref.
RMSE MAPE RMSE MAPE

Linear
regression 118 14.1 214 10.7 100 Data-driven prediction of the battery cycle life before

capacity degradation 2019 811 [1]

RF, linear
regression,

ANN
80 9.8 174 7.5 80 Prognostics of the battery cycle life in the early-cycle stage

based on a hybrid model 2021 41 [317]

Ridge Reg 125

-

188

- 100
Statistical learning for accurate and interpretable battery

lifetime predictions 2021 30 [102]
Enet Reg 132 196

RF 141 197
MLP 140 218
CNN 72 204

CNN, MLP 114 8.54 178 11.31 100 A hybrid ensemble deep-learning approach for the early
prediction of batteries’ remaining useful life 2023 9 [333]

GPR, LSTM 30 5.52 51 5.35 100 Joint modeling for early predictions of Li-ion-batteries’
cycle life and degradation trajectory 2023 3 [335]

Table 16. Prediction performance of studies in the portfolio using different samples for validation with the MIT dataset.

Algorithm Target MAPE RMSE RMSPE MAE MRE R2 Observations Ref. Year

Bayesian ridge
Capacity

(Ah)

0.45 0.76

- Predicting capacity considering only a short
portion of partial charge/discharge data

- Requires a 15 min sample of operation
- Utilizes charging and discharging steps
- 63 cells for training, 10 for calibration, 51 for

testing (split based on the distribution of cycle
numbers in the dataset, maintaining the same
distribution across all the sets)

[54] 2021

GPR 1.00 1.91
RF 0.11 0.14

DNN 0.23 0.45

CNN RUL 10.6 76

- Utilization of four cycles
- Incorporation of charging and discharging steps
- 86 cells for training, 19 for validation, 19 for testing

[8] 2020
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Table 16. Cont.

Algorithm Target MAPE RMSE RMSPE MAE MRE R2 Observations Ref. Year

GBT RUL 7.5 84.9 58.6 0.94

- Usage of 250 cycles
- Incorporation of the discharge stage
- Data split into 2/3 for training and 1/3 for testing;

no specification if cells from the training set are
excluded from the test set; the splitting process is
repeated four times, and the performances
are analyzed

- Performance corresponds to the average of the
four cases

[83] 2020

CNN
Early battery

lifetime

3.80 (1) 42 (1) 33 (1) - Testing for the use of the first 20 (1), 40 (2), 60 (3),
80 (4), 100 (5) cycles for battery life prediction

- Utilization of the first five cycles and the last
fifteen cycles for RUL prediction

- Incorporation of the charging stage
- 94 cells for training, 30 for testing

[315] 2021

1.30 (2) 19 (2) 13 (2)
1.12 (3) 13 (3) 11 (3)
1.21 (4) 13 (4) 10 (4)
1.12 (5) 11 (5) 9 (5)

RUL 3.55 11 9

DNN

End of life
7.78 (1) 57 (1)

- Testing for the use of the last 1 (1) to 100 (2) cycles.
- Incorporation of the discharging stage
- EoL = current cycle + cycles used for data

collection + RUL.
- 65 cells for training, 16 for testing (discarding

43 cells)
- Majority of RMSE for RUL < 50 cycles, larger

errors for cells with fewer than 100 cycles
- * Errors for predicting the current life cycle

increase infinitely for cells with over 750 cycles
(author’s justification based on the low sample
quantity for this scenario)

[318] 20223.97 (2) 33 (2)

Cycle life
<65 (1)
<40 (2)
>90 *

RUL
<65 (1)
<40 (2)
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Table 16. Cont.

Algorithm Target MAPE RMSE RMSPE MAE MRE R2 Observations Ref. Year

SVR Capacity
trajectory

(Ah)

1.61 3.22
- Use of the last 20 cycles
- Estimates the evolution of capacity trajectory over

time until EoL (time series using regression)
- Incorporation of both charging and

discharging stages.
- 84 cells for training, 40 for testing

[253] 2022RF 0.93 2.12
GPR 1.35 2.58
ANN 1.13 1.92

CNN RUL 4.15 27.47 16.09

- Use of 10 cycles
- Incorporation of the charging stage
- 70% of the data for training, 30% for testing (does

not specify if cells from the training set were
excluded from testing)

[319] 2022

Linear reg, (1)
RUL

90 53.81 *

- Use of 10 cycles
- Does not exclude cells from training during

testing; 60% of the data for training, 20% for
validation, and 20% for testing

- Incorporation of the charging stage
- Classification model to predict if a battery has less

than 150 cycles of RUL or 150 cycles or more
of RUL

- RUL Approaches:
- (1): Does not consider the classification model
- (2): Regression model for each predicted RUL

class in the classification model
- * Considering cases where RUL > 150 cycles:

18.51, 10.51, 9.79, respectively
- For capacity, the author evaluated 100 **, 150 ***,

and 200 **** cycles ahead

[321] 2021

MLP (1) 52 23.03 *
Logistic reg. +

MLP (2) 49 15.2 *

MLP
Discharge

capacity after
“x” cycles.

0.24 **
0.45
***

0.64
****
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Table 16. Cont.

Algorithm Target MAPE RMSE RMSPE MAE MRE R2 Observations Ref. Year

Transfer
Learning

(CNN + RNN +
“fully

connected”)

Capacity
(Ah)

0.176 * 2.57 * 0.999 *

- Use of the last 30 cycles to predict the capacity of
the next cycle and RUL

- The author does not assess the performance of
estimating the capacity trajectory for horizons
longer than one cycle

- Use of the charging stage
- Use of the MIT dataset to train a model and

evaluate the performance of the model with
transfer learning on a dataset constructed by
the author

- Author’s dataset contains information from
77 LFP/graphite cells of 1.1 Ah.

- 22 cells separated for testing
- * Performance considering training with the

author’s dataset.
- ** Performance considering transfer learning from

a model pretrained with the MIT dataset

[385] 2022

0.328 ** 4.65 ** 0.997
**

RUL
8.72 * 186 * 0.804 *

9.80 ** 240 ** 0.770
**

Elastic net

RUL

5.21 43.38 0.98

- Use of 100 cycles
- Use of both charging and discharging stages
- No exclusion of cells from training in testing; 70%

of the data for training, 30% for testing

[329] 2022

GPR 5.26 43.71 0.98
SVM 5.88 53.04 0.97
RF 8.17 84.69 0.92

DT ensemble 7.93 88.74 0.91
XGBoost 7.92 91.13 0.92

RVM 10.32 96.21 0.89
DT 9.59 106.62 0.87
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Table 16. Cont.

Algorithm Target MAPE RMSE RMSPE MAE MRE R2 Observations Ref. Year

CNN, LSTM

Cycle life

2.28 (1) 19 (1) 14 (1) 0.9980
(1)

- Testing of usage from the last 50 (1), 60 (2), 70 (3),
80 (4), 90 (5), 100 (6) cycles

- Usage of both charging and discharging stages
- 93 cells for training and 31 for testing (split based

on the distribution of cycle numbers in the
dataset, maintaining the same distribution in all
the sets)

[327] 2022

4.59 (2) 50 (2) 33 (2) 0.9869
(2)

3.02 (3) 25 (3) 18 (3) 0.9967
(3)

3.43 (4) 25 (4) 19 (4) 0.9967
(4)

1.84 (5) 16 (5) 13 (5) 0.9985
(5)

1.47 (6) 11 (6) 9 (6) 0.9993
(6)

RUL

2.16 (1) 12 (1) 8 (1) 0.9993
(1)

3.17 (2) 15 (2) 12 (2) 0.9989
(2)

1.93 (3) 11 (3) 8 (3) 0.9994
(3)

1.85 (4) 14 (4) 10 (4) 0.9990
(4)

1.72 (5) 13 (5) 9 (5) 0.9992
(5)

1.25 (6) 8 (6) 6 (6) 0.9997
(6)

Graph Neural
Network

Capacity
trajectory

(Ah)

0.009 * 0.0377
*

0.9399
*

- Using 350 measurement points as input.
- Usage of the charging stage.
- 70% of the cells used for training and 30%

for testing.
- Estimates the evolution of capacity trajectory over

time until End of Life (time series using
regression).

- * Performance based on the worst predicted cell.
- ** Performance based on the best predicted cell.

[92] 2023

0.004 ** 0.0025
**

0.9894
**
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Table 16. Cont.

Algorithm Target MAPE RMSE RMSPE MAE MRE R2 Observations Ref. Year

LightGBM

SoH (%)

1.751
- Estimation of SoH based on 300 s measurements
- Usage of the discharge stage
- Cells 91 and 100 from the MIT dataset are used

for training, cell 124 used for testing
- * Model considering LightGBM, XGBoost,

Random Forest (RF), SVR, GPR as base models,
and linear regression as a meta-model

[99] 2023
XGBoost 1.616

RF 1.721
SVR 1.926
GPR 1.539

Stacking 1.489 *

LSTM
SoH (%) after

“x” cycles

0.016 (1) 1.81 (1) 0.0098
(1)

- Testing prediction horizons of 25 (1), 50 (2), 100
(3), 150 (4), 200 (5), 250 (6), 300 (7), 350 (8), 400 (9)
cycles ahead

- Usage of charge and discharge stages
- 64% of the cells are used for training, 20% for

validation, and 16% for testing (cells cannot be in
more than one set)

- Average of performances per cell

[144] 2023

0.021 (2) 2.30 (2) 0.0130
(2)

0.024 (3) 2.80 (3) 0.0140
(3)

0.024 (4) 2.86 (4) 0.0120
(4)

0.031 (5) 3.60 (5) 0.0180
(5)

0.026 (6) 3.00 (6) 0.0150
(6)

0.030 (7) 3.49 (7) 0.0200
(7)

0.032 (8) 3.70 (8) 0.0200
(8)

0.033 (9) 3.80 (9) 0.0201
(9)
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Table 16. Cont.

Algorithm Target MAPE RMSE RMSPE MAE MRE R2 Observations Ref. Year

RF Cycle life 0.57 4.65

- Usage of 100 cycles.
- Utilization of charge and discharge stages.
- 75% of the data used for training, 25% used for

testing (cells from the training set were not
excluded from testing).

- Discrepant results compared to the literature,
potential model validation error by the author.

[334] 2022

ResNet50

Early
lifetime

119.98 0.8501
- Use of the first 100 cycles for predicting the total

lifespan.
- Utilization of images obtained from plots with

voltage and capacity information as features.
- 80 cells for training and 43 cells for testing,

process repeated five times.

[111] 2024
CNN 115.85 0.8557
LeNet 129.77 0.8197

AlexNet 91.51 0.9121
VGG16 122.19 0.8466
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Through a comparison analysis, it is possible to observe performance improvements
compared to the baseline study in [315], with a MAPE of around 3.5% using a CNN. In [8],
the authors achieved significant performance with a CNN and only four cycles of data
as input to the algorithm, a reduction that provides new perspectives for the use and
conditioning of batteries. Using TL, the authors in [385] achieved results within the error
magnitudes of the studies that use only one dataset, demonstrating that TL can be a useful
tool for aggregating the volume of information from other types of experimental tests and
cell technologies to overcome data limitations. In [327], the best results for RUL prediction
were achieved, with MAPE values below 2%. The authors conducted tests considering
different data usage intervals, ranging from 50 to 100 cycles, and using a hybrid LSTM-
CNN approach. Conversely, in [334], the authors claim errors around half a cycle, well
below those presented in various consulted studies. The use of data from all the cells
during training ends up bringing a possible leakage when validating the algorithm because
the pattern of all the cells was passed to the model, which, consequently, did not develop
proper learning but possible “rote memorization”, associating levels of variable values with
related life cycles. This point highlights the importance of correctly analyzing the results
for the dissemination of research in the field.

This analysis reveals significant challenges in comparing RUL prediction models
because of inconsistencies in data splitting, target variables, and evaluation metrics across
different studies. Although advancements have been observed, particularly with hybrid
models, like LSTM-GPR and the application of TL, the lack of standardized methodologies
hinders direct comparisons and hinders the identification of truly superior approaches.
The use of limited data cycles in training, as demonstrated in [8], and the exploration
of feature engineering, as suggested by the results in [317], present promising avenues
for future research. However, it is crucial to emphasize the importance of rigorous data
splitting procedures, avoiding data leakage, as observed in [334], to ensure the reliability
and generalizability of the obtained results. Notably, for most of the analyzed models,
MAPE errors of around 10% have become achievable with the development of algorithms
and open datasets. Moving forward, establishing standardized datasets and evaluation
protocols will be essential to facilitate progress in the field and enable more meaningful
comparisons between different RUL prediction models.

3.6. The Importance of SoH in Smart Systems, Energy Informatics, and Smart Grids

Accurate battery SoH estimates, derived from ML algorithms and analyses based on
large datasets, have significant implications for energy informatics and intelligent systems,
such as smart grids. This study explores some of the key applications connecting SoH
prediction to improvements in energy efficiency and sustainability.

Energy Informatics and Energy Management in Smart Grids: Energy informatics, the
integration of information systems and energy, plays a fundamental role in the efficient
management of smart grids. Accurate SoH estimation enables more effective management
of second-life batteries by integrating them into storage and distribution networks. This
approach not only reduces waste but also enhances the reliability and resilience of electrical
grids, especially in contexts involving renewable energy sources [1,10,12].

IoT Devices and Sustainability: SoH prediction models based on DL techniques, such
as LSTM and CNN networks, facilitate the preventive maintenance of IoT devices that rely
on batteries. These models support a more sustainable economy by optimizing replacement
cycles and extending the lifespans of connected smart devices [48,54,64]. The use of these
devices in smart grids also reduces reliance on manual interventions, promoting greater
automation and efficiency [9,12].
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Real-Time Monitoring and Control: Wireless sensor networks (WSNs) integrated
with SoH algorithms offer real-time monitoring capabilities, essential for dynamic system
adjustments. In smart grids, this enables load balancing and the optimization of the energy
distribution, improving the overall system performance [54].

Environmental Impact and Sustainability: The reuse of batteries, underpinned by
reliable SoH estimates, contributes to a circular economy by reducing the environmental
impact and the carbon footprint associated with the production of new batteries [9,12].
Hybrid models, such as the combination of LSTM with Elman neural networks (ENNs),
have already demonstrated accuracy gains of up to 50% compared to classical approaches,
increasing confidence in battery reuse for storage systems and smart grids [48].

Through these applications, SoH prediction not only enhances the management and
efficiency of smart grids but also reinforces the connections among energy informatics,
sustainability, and technological innovation. This highlights the importance of robust
prediction methods for the future of intelligent energy systems.

Additionally, it is essential to emphasize that accurate SoH prediction significantly
contributes to the evolution of intelligent systems by reducing operational uncertainties
and enabling the seamless integration of emerging technologies. The precise forecasting of
SoH enhances system reliability by enabling the optimized allocation of energy resources,
such as second-life batteries, across diverse use cases. These advancements also support
the adoption of predictive maintenance systems, which reduce operational costs while max-
imizing energy efficiency and long-term sustainability. By converging machine-learning
techniques, such as deep neural networks, with advanced data management platforms,
SoH becomes a critical metric for decision-making in smart grids and the IoT, driving
resilience and sustainability in energy infrastructure.

4. Conclusions
This study highlights the growing importance of ML techniques in estimating the SoHs

of batteries, as evidenced by a systematic bibliographic portfolio analysis. The application
of ProKnow-C enabled the objective selection of 534 relevant papers from an initial pool of
6032 publications, providing a structured and replicable methodology for characterizing
research within this domain.

The results reveal several key trends. First, there has been a significant increase in
scientific production in this area, particularly since 2022, with 40% of the selected papers
published in 2023. The increasing relevance of battery reuse, driven by the expansion of the
electric vehicle market, is expected to further boost research in SoH estimation. Second, the
analysis highlights the importance of open datasets, with 60% of the reviewed studies using
publicly available data. The NASA Prognostics Center of Excellence repository remains the
most cited source, accounting for over half of the open data usage. Overall, the portfolio
analysis revealed the presence of 12 available open data sources, with 6 of these sources
published in the years 2022 and 2023.

From a methodological perspective, DL techniques, especially LSTM networks and
CNNs, dominate the field, with DL accounting for 58% of the implementations. Hybrid
approaches, including those combining LSTM and CNNs, are increasingly prominent, rep-
resenting approximately 25% of the reviewed studies. The emergence of TL in publications
since 2022 also highlights a promising avenue for leveraging diverse datasets to address
data scarcity and heterogeneity in SoH modeling.

Performance evaluations based on the MIT dataset indicate that classical approaches
achieve mean absolute percentage errors of approximately 10%, whereas DL techniques
have reduced errors by 50% in some cases. Some studies report prediction errors as low as
1–4% using CNNs, emphasizing the potential of advanced algorithms in this field.
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The results presented underscore the critical role of SoH predictions in advancing
energy informatics and intelligent energy systems. Accurate SoH estimates enable the
integration of second-life batteries into smart grids, enhancing their reliability, supporting
renewable energy utilization, and optimizing energy distribution in interconnected systems.
Additionally, the application of SoH prediction models in IoT devices and wireless sensor
networks facilitates preventive maintenance, reduces waste, and contributes to a circular
economy. These methodologies not only transform energy systems by aligning with the
goals of efficiency and sustainability but also enhance operational resilience through real-
time decision-making processes. This potential extends to the design of smarter, greener
infrastructures that meet the evolving demands of global energy markets.

The findings and insights derived from this study, along with prior research conducted
by the authors in the field of SoH estimation and energy systems, have contributed sig-
nificantly to shaping future research directions. The accumulated knowledge from these
studies served as a foundation for defining key research gaps, refining methodological
approaches, and aligning investigations with emerging challenges in this domain. By
integrating lessons learned from previous studies, this review strengthens the proposition
of future research strategies and the advancement of machine-learning applications in
battery-health prediction [434–439]. Future research could further explore the integration
of these methodologies into real-world applications, strengthening their role in smart
energy management.

In summary, this study provides a comprehensive characterization of the current
stage of the research in battery SoH estimation using artificial intelligence, made possible
through the application of a systematic bibliographic portfolio assessment. Notably, no
prior review had applied this methodology in this field. These findings contribute to (i) the
presentation and exemplification of the use of a systematic methodology for obtaining a
bibliographic portfolio, ProKnow-C; (ii) the characterization of the current landscape in
the field of SoH estimation using ML; (iii) the presentation of open data sources and their
key characteristics, including datasets recently made available, which contribute to the
development of new research and comparisons of approaches in this area of development;
and (iv) the assessment of performance levels achieved by different researchers in their
work, considering the techniques used and modeling conditions applied.

Despite these contributions, this study has limitations. The selection of articles may
be subject to bias because of the researchers’ prior knowledge and the constraints of
ProKnow-C. The integration of generative AI tools with ProKnow-C presents a promising
avenue to reduce selection bias by automating and improving the evaluation of titles and
abstracts while significantly accelerating the time required to construct a bibliographic
portfolio. Furthermore, this study did not conduct a quantitative evaluation of the quality
of individual datasets or the specific impacts of variables provided by these datasets. It
also lacks an in-depth analysis of the computational performance and predictive power of
the surveyed algorithms.

To address these gaps and advance the research in this field, future research
directions include:

• Feature-engineering processes with an emphasis on explainability analysis and behav-
ior evaluation across different datasets;

• Implementation of models using the identified open datasets, focusing on assessing
the applicability of transfer learning to address datasets with limited volumes;

• Integration of the ProKnow-C methodology with generative AI, aimed at automating
the selection process and reducing bias in bibliographic portfolio construction.
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CRNN Convolutional Recurrent Neural Network
DBN Deep Belief Network
DBNN Deep Bayesian Neural Network
DCN Deep Cross Net
DCNN Deep Convolutional Neural Network
DELM Deep Elman Neural Network
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DL Deep Learning
DNN Deep Neural Network
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DSMTNET Dual Self-Attention Multivariate Time Series Estimation Network
DT Decision Tree
ELM Extreme-Learning Machine
ENN Elman Neural Network
FCNN Fully Connected Neural Network
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FFNN Feedforward Neural Network
GAM Generalized Additive Model
GBT Gradient-Boosting Tree
GNN Graph Neural Network
GRU Gated Recurrent Unit
GPR Gaussian Process Regression
IOWA Induced Ordered Weighted Averaging
KNN K-Nearest Neighbors
LCO Lithium Cobalt Oxide
LFP Lithium Iron Phosphate
LR Linear Regression
LSTM Long Short-Term Memory
MAE Median Absolute Error
MAPE Mean Absolute Percentage Error
MLP Multilayer Perceptron
ML Machine Learning
NAR Nonlinear Autoregressive
NARXNN Nonlinear Autoregressive with Exogenous Input Neural Network
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PKNN Prior Knowledge-Based Neural Network
QRF Quantile Regression Forest
RBFNN Radial Basis Function Neural Network
RESNET Residual Network
RF Random Forest
RMN Regressive Matching Network
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RPD Raw Papers Database
RUL Remaining Useful Life
RVM Relevance Vector Machine
SoC State of Charge
SoH State of Health
SVM/SVR Support Vector Machine/Regressor
SSEL Secondary Structural Ensemble Learning
TCN Temporal Convolution Network
TNN Transformer Neural Network
TL Transfer Learning
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