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Abstract—This paper presents the development of a humidity sensor
based on bacterial nanocellulose membrane (BNC) produced from
Komagataeibacter xylinus. BNC has a porous surface that absorbs water
and therefore it changes the mechanical and electrical properties of the
membrane. As the amount of water inside the membrane increases the
capacitance of the membrane also increases. The capacitance of the BNC
was measured in different values of temperature (from 30° to 100°) and
relative humidity (from 30% to 100%). Chronoamperometry was used as a
reproducibility test and the result was a linear and more precise variation
for RH over 50% and a temperature of 30°. The measurements showed a
combined sensitivity of -4.13nF/°C with relation to the temperature, and
+492nF/(%RH) and +66.8nA/(%RH) with relation to the relative humidity.

Index Terms—Biomaterials, Komagataeibacter xylinus, Fermentation, Bacterial Nanocellulose (BNC).

I. Introduction

N most applications the direct method of air humidity such
as psychometry is unsuitable. An alternative is to measure
air humidity indirectly by electromechanical properties such as
capacitance and resistance that change according to the air
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humidity. Humidity is defined as the amount of water vapor in
a certain gas [1] and air humidity is often used as a parameter
of quality for foods, beverages, and environments. Arduino
boards can interface with a DHT11 module, which contain a
capacitive humidity sensor good enough for indoor
applications. These modules have a single-bus data interface
to communicate with the Arduino. This module measures
relative air humidity from 20% to 80% with a 5% error [2].
Pravin et al. [3] used a micro-heater-based film to measure
humidity. The film’s impedance increased alongside air’s
humidity due to gas molecule absorption.

Biomaterials combine both efficiency and sustainability
when they are used purely or combined with other sensors to
measure humidity. The term biomaterial has been defined as
“a material designed to take a form that can direct, through
interactions with living systems, the course of any therapeutic
or diagnostic procedure” [4]. Fiber Bragg grating combined
with a moisture sensitive coating that expands with humidity
thus deforming the Fiber Bragg grating’s structure [5], [6].
The optical properties of the Fiber Bragg are directly related to
the strain so the humidity can be measured indirectly by the
wavelength that the fiber reflects.

Nanocellulose produced from bacteria, known as BNC (or
bacterial nanocellulose), has gained a promising role as an
alternative source compared to other cellulose classes. Due to
its structure, this material shows several excellent properties
such as high water-holding capacity [7], a high degree of
polymerization [8], unique nanostructure [9], high crystallinity
[10,11], and high mechanical strength [12-14]. Studies have
shown that these particular features of BNC, paired with its
biocompatibility, make this material an attractive candidate for
a wide array of applications (e.g., biomedical, pharmaceutical,
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biotechnology [15]; cosmetics [16], food [17,18], textile [19],
and even in the electronics field [20-22]).

BNC's superior water absorption capacity can be useful in a
variety of food production since it has a tasteless, hard texture,
low calories, and high fiber quantities. Some examples of
foods that use BNC are yogurts and pastries [23]. BNC also
has applications as a green sustainable food package because it
has a thin membrane as well as good mechanical properties
and flexibility and has low-cost production [24]. However,
pure BNC lacks antimicrobial and antioxidant properties [25].
Vilela et al. [26] created a film of polymerized sulfobetaine
methacrylate with BNC (PSBMA/BNC) and compared it to
pure BNC as a candidate material for intelligent food
packaging. Both composites benefit from UV-light protection,
moisture, and water absorption, as well as suitable thermal and
mechanical properties. High thermal stability is often a
requirement for food applications due to sterilization processes
that use high temperatures at 150°C. Pure BNC films absorb
roughly 79% of water after being immersed in water at 25°C
for 48h. The PSBMA/BNC has 5.1 to 7.1 of the absorption
capacity of pure BNC.

Nanocellulose has also been used as a biosensor in many
applications. Biosensors consist of a biological recognition
component and a physicochemical transduction device that
can be employed as an analytical tool to detect an analyte in a
wide range of environments [27]. Cellulose nanocrystals also
have applications in the food industry. Cellulose nanocrystals
combined with carbon nanotubes and embedded with
polyaniline result in a conductive composite that absorbs
methanol, acting as an effective detector of adulterated
beverages [28]. Cellulose acetate nanofibers are used in the
development of electrochemical paper-based analytical
devices (EPADs). Ahmadi et al. [29] developed an EPAD
based on cellulose nanofiber with Au electrodes to detect
blood glucose levels by separating blood and plasma. Due to
the unique characteristics of the BNC-based membrane, red
blood cells and white blood cells were filtered and separated
by the different size of the micropores.

BNC has also been modified and combined with other
materials in order to create composites for supercapacitors
[30-33]. For instance, BNC/graphene oxide is a flexible
composite with high storage capability [30-33]. Jiang et al.
[30] have developed a BNC with grapheme oxyde composite
supercapacitor with a 373F.g” at 1A.g"". Wang et al. [32] have
demonstrated the feasibility to develop substrates made of
surface modified nanocellulose fibers (NCFs) to synthesize
supercapacitor with gravimetric capacitances of 127F.g™! and
volumetric capacitances of 122F.cm™ at current densities of
300mA.cm (or ~33A.g!). Kang et al. [33] developed a solid-
state flexible supercapacitor with BNC and carbon nanotube
with a 50.5F.g"!' capacitance and 15.5mWh.g"! storage power.
In addition, BNC can be combined with polyaniline and used
as a conductive electrode in supercapacitors. In this context,
this paper presents the electrical characterization of a bacterial
nanocellulose membrane as a biosensor for humidity
measurement. As the humidity increases, the capacitance of
the membrane also increases. The capacitance of the BNC was
measured in different temperatures from 30°C to 100°C and
relative air humidity from 30% to 100%.

Il. EXPERIMENTAL

A. Nanocellulose membrane fabrication

The bacterial strain used was Komagataeibacter xylinus
ATCC 53582. The strain was stored in an ultra-freezer, at
-80°C (Nuaire), in a culture medium containing 20% glycerol,
reactivated in Hestrin—Schramm (HS) medium. HS medium
contains 20.0g.L! glucose, 5.0g.L"! bactopeptone, 5g.L! yeast
extract, 2.7g.L! sodium phosphate anhydrous and 1.15g.L"!
citric acid monohydrate. The pH of the culture medium was
previously adjusted to 6.5 and autoclaved for 20min at 121°C.
Fig. 1 shows the steps of the fabrication of the BNC
membrane.

Komagataeibacter xylinus was inoculated on HS agar plates
and incubated at 28°C for 7 days. Bacteria colonies were
randomly selected and suspended in the selected media. For
the synthesis of BNC membranes, 10% v/v of bacterial
inoculum was added to HS medium, transferred to petri
dishes, and incubated for 7, 10, 15 and 30 days under static
conditions at 28°C. The fermentation time changes the
thickness of the membranes. The membranes formed at the
liquid/air interface were then removed and transferred to a
flask containing a 0.1M sodium hydroxide solution and
maintained for 24 hours at 50°C to remove bacteria and/or
residues from the culture medium. The BNC membranes were
then subjected to successive washes with distilled water, or
until the pH of the rinse water was equivalent to that of the
distilled water used in the wash. The membranes were
autoclaved for 20 minutes at 121°C and kept refrigerated until
use. Before the electrode deposition the BNC membranes were
dried at 40°C on a surface for 48 hours, until constant weight.

() (d)

Fig. 1: Photographs showing the (a) BNC production in static cell
culture, (b) BNC membranes in NaOH solution prepared for the
purification process, (c) BNC membrane before purification, and
(d) BNC membrane after purification and sterilization in an autoclave.

B. Electrodes deposition
The electrodes were fabricated on both sides of the
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nanomembranes by DC sputtering (BALZERS BAE 370,
Switzerland) in a 1000 class cleanroom environment. This
process is reproducible. The deposition was performed using a
copper shadow mask fabricated by lithography followed by
etching in ferric chloride (FeCls). The metallic thin-films were
5nm 80:20wt% Ni:Cr deposited at a ratio of 1.1A/s for 45s and
95 nm Au at 2.8A/s for 5 minutes and 40 seconds. The base
pressure and temperature pre-deposition were approx. 4x10°
Smbar and 30°C, respectively. After injecting argon into the
chamber, the pressure increased to 1x10-3mbar. Nichrome was
used to improve the adhesion of gold to dielectric surfaces.
The overlapping area that defined the active area of the
capacitive sensors was 3mmx3mm (ca. 9mm?). Fig. 2 provides
schematics related to the configuration of the electrodes.

C. Measurement setup

The study and characterization of nanocellulose membranes
in a reproductive way was carried out in a hermetically sealed
acrylic chamber developed in our group, consisting of a
heating and a humidity control system. The heating system
consists of an XH-WI1315 digital thermostat with a
temperature control range of -99°C to 999°C and a resolution
of 1°C. The output of the module is connected to a SOW PTC
aluminum ceramic heating element with type K thermocouple
for temperature sensing.

a) b)

1 25 mm o top electrode

\ bottom
electrode
o

e

‘ Ni:Cr (5 nm)/Au (95 nm) electrodes

bacterial nanocellulose substrate and

diclectric
3mm

Fig. 2: Electrical contacts in the BNC: (a) top view of the shadow mask;
and (b) 3D representation illustrating the electrodes overlapping area.

The current applied to the heating element was set using an
XLA4015 step-down converter DC/DC. This converter has a
fixed frequency of 180 kHz and can drive a 5A load with high
efficiency, low ripple, and excellent line and load regulation,
allowing better performance and control in the membrane
heating experiment.

The humidity in the chamber was controlled using a
commercial hygrometer, model XH W3005, with a humidity
range of 00% RH to 99% RH and an accuracy of 0.1% RH.
The output of the module was connected to an ultrasonic
nebulizer system, which was responsible for increasing the %
RH level in the chamber. However, when it was necessary to
lower the % RH level, dry air was supplied to the chamber.
The inlet and outlet of humid and dry air in the chamber are
automatically controlled. Fig. 3 shows the experimental setup
developed in this work.

D. Characterization techniques

The structure and morphology of the developed

nanocellulose membrane was investigated with a field
emission scanning electron microscope (FE-SEM) JEOL JSM-
6390LV operating at 10kV. X-ray diffraction (XRD)
measurements were carried out using a CuKoa radiation
(Phillips diffractometer, model X Pert) in the range of 5-40°
20 at a scan rate of 1°min’!.

pcontroller system nebulizer system

measurement
chamber

USP - SEL/EESC

temperature
controller

humidity
control

Fig. 3: Photographs of the (a) experimental setup developed in this
work, (b) power supply, control, and nebulizer system, and (c)
Microcontroller used to control temperature and humidity.

The electrical characterization was performed on a square
BNC sample (2.5cmx2.5cm) where changes in capacitance
were observed as a function of temperature and humidity.
Measurements were done with an Agilent LCR model
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E4980A with Keysight BenchVue software. For all
experiments, the parameters were settled to 2V and a
frequency of 2kHz.

[ll. RESULTS AND DiscussioMm

A. Structure and morphology characterization

Fig. 4(a) and (b) show, the SEM images of the top and
bottom side of the BNC and its XRD, respectively. As it is
possible to observe, the membranes have a tangled structure
with pores randomly dispersed throughout the matrix. This
porous structure facilitates the trapping and adsorption
processes of H,O due to its highly tangled network of fine
fibers. As can be seen, all XRD patterns are well in agreement
with cellulose I structures as defined by ICDD (International
Centre for Diffraction Data). A well-defined peak indicates a
high degree of crystallinity. The peaks are located at 14.46°,
16.66° and 22.53° and they correspond to the cellulose I
polymorph structure [34].

—— BNC sample XRD
----- ICDD XRD
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Fig. 4: (a) SEM images of the top (left) and bottom (right) side of the
BC nanocellulose membrane, and the respective (b) XRD.

o

B. Electrical characterization of the membrane as a
function of temperature and humidity

Fig. 5(a) shows how the capacitance response varies over
time as a function of temperature applied to the membrane.
The capacitance was monitored for 10 minutes in order to
evaluate if the capacitance value would be stable over time.
For temperature values from 70°C to 100°C, the capacitance
values were almost the same (around 10nF to 20nF) and for
lower temperatures the capacitance value varied from 80nF to
275nF. Fig. 5(b) shows the capacitance threshold versus

temperature. The capacitance threshold was greater for 30°C
than for temperatures higher than 60°C. Therefore, the
humidity experiments were executed at a temperature of 30°C.

As it can be observed in Fig. 5(c) and (d), the membrane
capacitance value changes when exposed to different
percentages of relative humidity in the chamber. The
significant increase in the capacitance value may be related to
the porosity and roughness of the membrane. Therefore,
rough, and porous surfaces allow a greater availability of
absorption for water molecules. On the other hand, this
increase in capacitance can also be attributed to the difference
in dielectric values of the water and the bacterial membrane.
In this way, the BNC works by attracting water molecules
with their hydrophilic functional groups, resulting in an
increase in its capacitance and the dielectric constant. For
values of %RH over 50% the capacitance threshold (Fig. 5(c))
over time is significantly higher than the capacitance for lower
values of %RH. The capacitance variation versus %RH
(Fig. 5(d)) for 50% to 100% is about 27uF whereas the
variation for 30% until 50% is less than SuF. Consequently,
the membrane is more accurate to measure %RH values over
50%. A reproducibility experiment was performed with the
nanocellulose membranes as a function of %RH over time
using chronoamperometry. Fig. 5(e) shows a constant current
response of the membrane after 150 seconds exposed to a set
humidity level. Finally, Fig. 5(f) shows the current versus
%RH. The results show that when the humidity level is above
50% RH there is a greater difference in current values of about
0.72pA. However, at humidity levels of 30%, 40% and 50%
RH the difference in response current was about 0.28uA.
Therefore, the membrane has better resolution in detecting
humidity above 50% RH over time.

It must be noted that the interpolations on (b), (d) and (f) are
only for a better visualization purpose.

The sensitivity of this sensor applied to the variation of the
capacitance in relation to the temperature is given by:

S oc [nF/°C] )
=—— |n
' er

Capacitance [nF]

0 100 200 300 400 500 600
Time [s]

(@)



Page 5 of 23
5

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX

300

250

200

oNOUVE D WN=

150

—
o

100

O
Capacitance [nF]

—_
N —

50

—_ e e
O oONOYUVL b~ W
o

30 40 50 60 70 80 90
Temperature [°C]

(b)

100

35

NN
- O

30F

NN
w N

25F

W wwwiNNNNNN
WN=O0OW0V0oOoNO U D
Capacitance [uF]
- - N
o o (& o
T T T T

w

N

o
T

w w w w
0N Oy

35

100 200 300 400 500
Time [s]

(©

Y]
[« Ve

30F

D
N —

25F

S b
AW

o~
G
N
o
-

N
~
>
-

N
o))
Capacitance [uF]

U A A
- O o™
=
T

w
N

(9, ]
w

QL1 L1 L1 L1 L1
O Voo NOUV B~

30 40 50 60 70 80 90
Relative humidity [%]

(d)

100

20 E
15F E
<
3
= 10} 1
c
e
5
o
5 - -
0 - -
0 100 200 300 400 500 600
Time [s]
(e)
5 T T T T T T T T
41 ]
3 - 4
<
o ]
|
t2r 1
=
o
1 ]
0 - -
30 40 50 60 70 80 90 100
Relative humidity [%]

Fig. 5: (a,b) Capacitance response of the nanocellulose membrane as
a function of temperature, (c,d) humidity; and (e,f) reproducibility
experiment as a function of the humidity applied over time. It must be
noted that the interpolations on (b), (d) and (f) are only for a better
visualization purpose.

It was done a linear regression to the sensor datapoints in
Fig. 5(b) (obtained from the current after 600s in Fig. 5(a)) to
obtain an estimation of the sensitivity. The estimated value of
this sensitivity resulted on S=-4.13nF/°C, e.g., the capacitance
of the BNC sensor decreases 4.13nF for an increase of 1°C in
the temperature with a high correlation coefficient of 93.2%.

The same procedure was applied to the capacitance in terms
of the relative humidity:

Sy = [nF/(% RH)] )
n 0
ORI oRH

It was done a linear regression to the sensor datapoints in
Fig. 5(d) (obtained from the current after 600s in Fig. 5(c)) to
obtain an estimation of the sensitivity. Thus, the slope of this
polynomial function corresponds to the estimated value of
sensitivity, resulting on S=492nF/(% RH). This result indicates
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that for an increase of 1% in the relative humidity, the
capacitance of the BNC sensor increases 492nF. This gives a
high correlation coefficient of 98.8%.

The third sensitivity is the variation of the electrical current
in relation to the relative humidity, which is given by:

ol
S = o A/(% RH)] )
’ H

It was done a linear regression to the sensor datapoints in
Fig. 5(f) (obtained from the current after 600s in Fig. 5(¢)) to
obtain an estimation of the sensitivity. The estimated value of
this sensitivity resulted on S~66.8nA/(% RH) with a high
correlation coefficient of 99%.

IV. CONCLUSIONS

In this study, the excellent electromechanical properties of
the bacterial nanocellulose membrane were applied to
moisture detection. The membrane capacitance varies as a
function of the applied temperature and exposure time. For
temperature values above 70°C, the limit of detection by the
membrane was observed, which was around 10nF. The
sensitivity of the membrane exposed to different temperatures
resulted in 4.13nF for each temperature increment. In the
presence of humidity, the membrane sensor was able to
discriminate significant capacitance values from 50% RH,
with a sensitivity threshold of 492nF for a 1% increase in
humidity. Chronoamperometry also improved the resolution
and discrimination of the moisture levels detected by the
membrane, as well as the stability analysis. In conclusion, this
work presents the possibility of developing highly sensitive
and stable humidity sensors with low manufacturing costs
based on a bacterial nanocellulose membrane combined with
signal processing techniques. Figure 6 shows a photograph of
a manufactured device containing electrical contacts.

Al

~

—

g-_..

Fig. 6: Photograph of a selected sample of a complete fabricated
device, already with the electrical contacts deposited on both sides of
the BNC.
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