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Abstract—In this article, we present the development of
a volatile organic compound (VOC) gas sensor based on
graphite on a printed circuit board (PCB) multiplexed interdig-
itated electrode (IDE) sensor. We report the effects of graphite
as a sensing material deposited by the spray method and its
interaction response to specific gases. In addition, we demon-
strate how we designed and manufactured IDE sensors with
an integrated heating circuit and thermistor element, as well
as the 55-µL microchamber, which contributed to the fast
detection of gases. All experiments were performed with four
IDE sensors to verify the reproducibility and sensitivity of
the proposed methodology. Our results highlight that acetone
presented the highest detection sensitivity, with an electric
current increase of ±100 µA at a 200-ppm cycle with a
response of 0.92 s and full recovery at 2.62 s. Furthermore,
the developed sensors were able to detect and distinguish
between acetone, methanol, isopropanol, ethanol, and chlo-
roform gases. The sensors exhibited outstanding stability and repeatability when evaluated after six months. The sensors’
operation at 2 V makes it suitable for low-power devices with a high potential to be applied in future commercial
room-temperature VOC gas sensor devices.

Index Terms— Gas sensor, graphite, multiplexed detection, volatile organic compounds.

I. INTRODUCTION

OVER the last few years, a substantial increase in gas
emission has driven the development of highly sensitive

and selective gas sensors able to detect low concentrations
(part per million, ppm) of polluting, flammable, and hazardous
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gases [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. In particular,
toxic gases composed of volatile organic compounds (VOCs)
tend to be of interest to the sectors of medicine, automotive,
and oil industries for monitoring and preventing individual
exposure [11], [12], [13], [14], [15].

Regarding gas-sensing electronic devices, several materials
as sensing active layers have been reported, and among them,
when low concentration detection is required, semiconductor
materials and metallic oxides are commonly employed [16].
However, it remains a challenge to ensure their reproducibility,
sensitivity, selectivity, room temperature operability, and low
manufacturing costs for commercial applications [17], [18].

Recent studies have shown that sensor materials based
on sp2-type carbon structures, such as graphene, graphene
oxide, reduced graphene, and carbon nanotubes, are promising
candidates for the development of highly sensitive, low-
cost, and highly selective gas sensors for room-temperature
applications, due to their physical–chemical properties, such
as high conductivity, chemical, and thermal stability [19],
[20], [21], [22]. Nevertheless, graphite-based devices have
hardly been reported, which became this work’s main
motivation.

Anjum et al. [23] have presented a method for detecting
alcoholic vapors individually and in mixture forms through
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the use of graphite-doped calcium hydroxyapatite nanoceramic
materials. The sensors showed optimal performance at tem-
peratures between 30 ◦C and 60 ◦C, for a gas concentration
of 100 ppm, with a range of responses from 100% to 460%
for different gases, and rise and recovery times between 60
and 200 s [23]. Yu et al. [24] reported porous α-Fe2O3
nanorod graphite nanocomposites, which displayed a high
sensitivity of 16.9 toward 50-ppm acetone at an operating
temperature of 260 ◦C. Sakar Dasdan [25] presented an
interdigitated electrode (IDE) fabricated by drop casting of
graphite-loaded poly(phenyl sulfone) (PPSU/Gr) film on a
conductive substrate. IDE sensors were experimentally tested
at room temperature, and their sensitivity ranged from 10%
to 90% for different solvents, under saturated pressure [25].
More recently, Wang et al. [26] described the fabrication
of a self-powered flexible gas sensor based on MXene/Ag
with high sensitivity to ethanol (204% at 100 ppm) at room
temperature, which is 24.5 times higher than resistive gas
sensors.

As an attempt to overcome some of the previously men-
tioned challenges regarding the development of reliable gas-
sensing devices, we demonstrate the design and fabrication
of a four-electrode multiplexed IDE sensor using graphite as
a sensing layer, built by a spray deposition method, with
a microchamber structure, operating at room temperature.
We discuss the gas-sensing properties of graphite employed
as a VOC gas detector, considering acetone, methanol, iso-
propanol, ethanol, and chloroform. The electrical characteri-
zation methods with and without the presence of each studied
VOC gas selected were the current over time (I–t) curves and
current over concentration.

II. BACKGROUND

The fundamental working principle of gas sensors is based
on conductivity parameter alteration, for example, resistance
[�], electric current [A], frequency [Hz], and conductance [G],
when exposed to different gas concentrations. To carry out the
studies and acquire signals generated by adsorption/desorption
processes on the active layer, impedance spectroscopy, resis-
tance over time, conductometry, and current over time tech-
niques (chronoamperometry) are commonly employed.

Chronoamperometry (CA) has been highlighted as an
important technique applied for gas sensor signal acquisition
due to its high sensitivity, ease of circuit design and fab-
rication, low cost, as well as reduced components for the
instrumentation. This technique can be used to track changes
in current over time through a potentiostat/galvanostat circuit,
responsible for keeping a constant voltage while recording
the current generated by faradaic processes between two
electrodes [27], [28]. The faradaic current generated from
these reactions can be used to determine the concentration of
the gas being detected as well as its specificity. The sensor’s
sensitivity can be estimated based on its conductivity response
X , when exposed to ambient air or by an inert gas (N2),
in relation to the conductivity response to a particular analyzed
gas concentration[29], for example,

Sensitivity (S) = Xgas − XN2

XN2

. (1)

The selectivity of the sensor is determined by comparing
the conductivity values of the sensor when exposed to differ-
ent gases with different concentrations, and the reversibility
performance is evaluated by comparing the recovery time(s)
after gas exposure after several cycles [29].

III. EXPERIMENT

The IDEs were designed using ECAD software (Proteus
LabCenter) and manufactured using LPKF ProtoMat S63 on
a double-sided, 2-oz-thick copper-clad printed circuit board
(PCB) substrate FR4 (model Kingboard KB6167F). The sub-
strate was selected due to its electrical, mechanical, and chemi-
cal properties, which remain stable up to 175 ◦C. The circuits
of the sensor were coated with gold by a chemical process
(ENIG, according to IPC-4552) to improve the high corrosion
resistance and ensure the reproducibility of the developed
sensor for gas experiments. The electrical connections are
protected by a black resin solder mask.

Fig. 1(a) shows a schematic of the multichannel sensor with
the sensing circuit on the top side and the heating circuit on
the bottom side of the PCB substrate. The integrated heater
circuit was designed to ensure optimum performance when
using sensing materials that require an increase in temperature.
The size of the substrate presents a width of 23 mm, a length
of 25 mm, and a thickness of 1.5 mm. Each channel sensing
layer measures 4.3 × 4 mm. The width and spacing of the
IDEs are 200 μm, and the heating circuit was designed with
a spacing of 400 μm between the electrodes for uniform
heat dissipation. The circuit design proposed in this work
allows easy integration with plug-and-play connectors with
simultaneous measurement of the four-channel sensors and
common temperature control for the heating circuit through an
negative temperature coefficient (NTC) surface mount device
(SMD) thermistor (47 k�, reference NTCS0805E3 from the
manufacturer Vishay).

A. Graphite Deposition on PCB Sensor
A commercial spray composed of conductive graphite (CAS

7782-42-5) and isopropyl alcohol was purchased from Henkel
(Bonderite L-Gp G Aerosolized Graphite) for application as a
sensor film. A spray actuator valve, controlled automatically
using a coreless digital servo (model DS3235sg) and an
automatic linear stage actuator to move the spray deposition
system from left to right, was employed to ensure that the
same deposition process was applied to all IDE sensors. The
graphite solution was sprayed at a distance of 10 cm from
the sensor electrode, and five layers of the coating were
applied, interrupted by a 10-s break. A short pause was taken
between sprays to ensure that the solvent had completely
evaporated. In addition, the deposited sensor layers were dried
on a hot plate at 100 ◦C for 30 min under room environment
conditions.

B. Microgas Chamber Design and Manufacture
In order to increase gas detection current response and

shorten response time, we designed a polydimethylsiloxane
(PDMS) microchamber with a volume of 55 μL.
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Fig. 1. (a) Developed 4-channel IDE sensor. (b) Concept with the manufacturing process for the PDMS microchamber. (c) Schematic of the
experimental setup used in this work.

Several advantages arise when assembling the sensing
system with a PDMS microchamber, for example, reagents
and samples’ amount reduction for analysis, low cost, pre-
cise control of experimental conditions, effective sealing to
fluids and gases, and compatibility with different materials
[30], [31], [32]. In addition, the combination of PDMS and
current microfabrication technologies, such as soft lithogra-
phy, micromilling, and print-and-peel, allows for the custom
design of geometric microchannels and the integration and
manipulation of multiple samples into a single device, which
makes it an attractive candidate applied for the development
of VOC sensors [33], [34].

To manufacture the PDMS microchamber, a patterning mold
was designed in 3-D computer aided design (CAD) software
(SolidWorks) and printed using a 3-D stereolithography (SLA)
printer with a 405-nm clear UV resin. The mold was cured
for 5 min with 405-nm UV light. To create the gas inlet and
outlet channels, microchamber alignment, and locking it on the
sensor board, dowel pins of 1 mm in diameter and 8 mm in
length were placed in the respective location before applying
the PDMS resin. PDMS solution was prepared by mixing the
precursors Sylgard 184 silicone elastomer (Dow Corning) with
a curing agent at a ratio of 10:1 by volume, followed by
vacuum degassing for 30 min to remove all air bubbles in
the mixture.

The PDMS mixture was poured into the 3-D-printed mold
and cured overnight at 60 ◦C. After curing, the microchamber

was removed from the mold. A stainless-steel elbow tube
was added to the gas inlet and outlet connection and glued
with epoxy on top of the microchamber to avoid any type of
leakage. The connection to the gas injection system was made
through a tube-to-tube fitting reduction connector (PMK220-
210-1, Nordson Medical) with 1.6-mm internal diameter tub-
ing. The microchamber manufacturing process is illustrated
in Fig. 1(b).

C. Instrumentation and Experimental Setup
The IDE sensor, developed and assembled with the

microchamber, was connected to the measurement and control
system via a 12-pin, gold-plated, double-edged connector
(model 5650118-3, TE connectivity AMP connectors). The
sensor was connected to a portable potentiostat designed
by our group [35], modified with a multiplexer board
(CD74HC4067), to simultaneously acquire the current of
each sensor. Chronoamperometry was employed setting a
fixed voltage of 2 V, and the response current was recorded
simultaneously with an interval of 250 ms during 400 s. The
developed heating system consists of a temperature controller
model W3230 connected to the heating circuit at the bottom of
the IDE sensor and its temperature is controlled by the NTC
thermistor located in the center of the bottom board. The tem-
perature for the heating circuit was set at 30 ◦C for all exper-
iments. The flow system setup was strictly controlled using
a Mass Flow MKS 1149 (maximum range of 200 sccm/N2)
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Fig. 2. (a) SEM image of the deposited graphite film on the IDE sensor, and respective (b) XRD pattern and (c) Raman spectra.

and nitrogen (N2) cylinder (O2 impurity < 1 ppm),
which was connected into two different lines, Line 1 and
Line 2. Line 1 was used for N2 transport, useful to remove
undesirable gases, and Line 2 to assist VOCs’ vapor transport
[36]. VOC gases were then injected into the microchamber
through the inlet port, and the sensor’s change in current was
observed as a function of exposure time. Target gases based
on acetone, methanol, isopropanol, ethanol, and chloroform
were introduced at different concentrations ranging from 40 to
200 ppm (step of 20 ppm) to evaluate the sensitivity and
selectivity of the developed gas sensors. The concentration
of the target gases was estimated according to de Araújo
et al. [36]. Gas exposure was set as flowing for 15 s, considered
as the VOC gas into the microchamber, and, for the following
30 s, only N2 into the microchamber, with a total extent of
45 s. It was considered as a rise time, the time required for a
sensor to reach 90% of the maximum response under exposure
to the targeted gas, and recovery time as the one required for
a sensor to reach 90% of the original baseline current upon
removal of test gas [37]. Fig. 1(c) illustrates the experimental
setup employed in this work.

D. Characterization
Morphology of the deposited graphite film was investigated

with a field emission scanning electron microscope (FE SEM)
SEM JEOL 6510 operating at 20 kV. X-ray diffraction (XRD)

measurements were carried out using Cu Kα radiation (Rigaku
diffractometer, model D/Max-2500PC) in a 2θ range from 20◦
to 70◦, with a step of 0.02◦ at a scanning speed of 2◦min−1.
Micro-Raman spectra were recorded using the iHR550 spec-
trometer (Horiba Jobin-Yvon) equipped with a charge-coupled
device detector and an argon-ion laser (Melles Griot) operating
at 514.5 nm with a maximum power of 200 mW and a fiber
microscope.

IV. RESULTS AND DISCUSSION

A. Structure and Morphology Characterization
Fig. 2(a) shows the FE-SEM images of the film deposited

on the IDE sensor. As can be seen, the spray deposition
method allows a better uniformity of the graphite particles
on the IDE sensor. A magnified view of the selected area of
the sensor reveals that the graphite is composed of random
plates arranged on its surface, with a certain porosity that
offers better absorption and adsorption of the target gases. The
cross-sectional image shows the compaction of the graphite
particles, resulting in a thickness of approximately 6 μm,
which was observed for all sensors.

Fig. 2(b) shows XRD patterns of graphite films deposited
on IDE sensors. As can be seen, all XRD patterns are well in
agreement with hexagonal graphite structures with P63/mmc
space groups in accordance with Joint Committee on Powder
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Fig. 3. Calibration curve for (a) all gases showing the current response pattern (n = 4). (b) Sensor sensitivity at 200 ppm. (c) Sensor response for
all gases at different ppm concentrations. (d) Reproducibility test performed for all sensors at a 200-ppm cycle. (e) Long-term stability test performed
after six months for all sensors at a 200-ppm cycle. (f) Sensor sensitivity at 200 ppm with a 15-s gas cycle and 30 s recovering under N2.

Diffraction Standards (JCPDS) no. 751621 [38], [39]. A well-
defined peak indicates a high degree of crystallinity at long
range and a layered distribution of sp2 carbon atoms.

The peaks located at 26.44◦, 43.32◦, and 50.44◦ correspond
to the reflection of (002), (100), and (102) of the graphite
structure, respectively.

A Raman spectrum of the graphite film deposited on the
IDE sensor is shown in Fig. 2(c). As can be seen, tree bands
dominate the Raman spectrum (1580, 1350, and 2700 cm−1).
The band located at 1580 cm−1, known as the G-band,
is formed by Raman scattering of in-plane longitudinal and
transverse optical phonons in the center of the Brillouin zone
[40], [41], [42]. The band located at 1350 cm−1, known as
the D-band, corresponds to the breathing mode of graphite,
graphene, or graphene oxide structures due to transversal
optical phonons at the Brillouin zone corner K [29], [30]. This
band is generated in response to defects such as structural
disorder, vacancies, strain, and edge effects. Additionally, a
band was detected at 2700 cm−1, which was associated with
the double resonance of the D-band, known as the 2-D band
[43].

B. Electrical Characterization and Sensing Response
Electrical characterizations as a function of concentration

for the five studied VOCs, operating at room temperature

and under an applied voltage of 2 V, are shown in Fig. 3(a).
Each peak represents a current response to a gas concen-
tration increase in a 20-ppm step throughout time. In all
measurements, intervals were established as a 15-s “gas on”
condition, where there is a target VOC flow, and a 30-s
“gas off” condition, in which the target VOC flow is ceased
and an N2 injection starts to assist the sensor’s return to
an equilibrium condition. In the first condition, a current
increase in function of time is referred to as rising time,
whereas in the latter, a current decrease in function of time
is ascribed as recovery time. A rise time behavior observed
for all VOCs is expected, since it is related to the number
of molecules that can interact with available electrons on
graphite’s surface [36]. In Fig. 3(b), VOCs’ rise and recovery
curves for a 200-ppm concentration are highlighted, in which
one can note a clear distinction of current values for each
VOC studied. Such distinction indicates that each VOC’s
adsorption/desorption mechanism can be related to specific
electronic levels on graphite’s surface, that is, electronic
affinity to each type of molecule results in a particular current
variation. Given that, Fig. 3(c) presents a calibration curve
as a function of concentration (ppm) for each VOC, based
on four sensors studied in this experiment. Noteworthy that
even at low concentrations (40 ppm), there is a clear distinct
response among the gases. At higher concentrations, all VOCs
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TABLE I
FITTING CURVE DATA FOR (2) FOR DIFFERENT VOCS

presented high current values, especially acetone. However,
for chloroform, this behavior was noted only in a range of
80–180 ppm, also demonstrating a clear saturation trend above
180 ppm. Fig. 3(d) and (e) shows the reproducibility and long-
term stability test performed at a 200-ppm cycle for all gases
after six months from the initial experiments, respectively.
Fig. 3(f) depicts the sensor’s sensitivity for each VOC at a
200-ppm cycle. An analysis of Fig. 3(b) indicates that the
measured current for adsorption and recovery rate cycles
for different compounds can be modeled using exponential
equations and time constants [44]. The equations obtained
through the fitting of the experimental data are given by

I (t) = I�.e
−

(
t−t0

τ

)
+ I0 (2)

where τ [s] is the time constant previously mentioned and
I� [A] is the difference in current with respect to the initial
current I0 [A]. Table I presents that the rise time for all the
gases remained below 6 s, being symptomatic of the prompt
response of the sensor. The recovery time constant was also
evaluated and for all the gases it remained below 3 s.

By comparison to other studies based on sp2 materials,
as shown in Table II, our sensors demonstrated outstand-
ing performance for the most responsive gas (acetone) and
significantly even for chloroform, which showed the lowest
response in terms of current gain. Furthermore, our sensors
presented faster response and recovery times for the relatively
low gas concentration value. Due to our devices’ multiplexed
structure, detection method, and ability to detect different types
of VOC gases, this work offers wide application possibilities
in scenarios where prompt detection of toxic gases is essential.

C. Gas Sensor Mechanism
The mechanism underlying the detection of the organic

molecules is related to the adsorption of these molecules onto
the graphite surface and the interaction with the pi electrons
of graphite, there being a transfer of charge to the organic
molecule, and as a consequence, the formation of defects
leading to polarization at short and medium ranges. The
intensity and the observed reversibility of the sensor response
can be directly associated with the differences in the electronic
structure of the molecules resulting in physical interaction
at the graphite surface. These interactions are driven by
particular relations characterizing the molecules themselves,
the morphology, and the grain boundary between the graphite
particles. The graphite film is composed of a large number of

TABLE II
COMPARISON OF DIFFERENT VOC GAS SENSOR DEVICES OPERATING

AT ROOM TEMPERATURE WITH THE RESPECTIVE SENSITIVITY,
RISE/RECOVERY, AND DETECTION METHODS TO THE SENSOR

DEVELOPED IN THIS WORK

grains where charges build up in the grain boundary enhancing
the molecule–graphite interaction. This process is also favored
by the ability of the analytes to diffuse through the graphite
film contributing to different sensing responses.

The interaction of organic molecules (gases)/graphite can
be then analyzed in terms of the lamellar structure of graphite
with sigma-type bonds forming a plane, perpendicularly
pi-type bonds (electrons loosely bound to the graphite struc-
ture), and the polarity of the gases. In this way, chloroform
has no electronic structure for electron transfer, so it adsorbs
to a lesser extent. On the other hand, acetone has oxygen
with pi electrons that can interact more strongly with the
graphite structure, producing a more marked electronic defect.
In addition, methanol, isopropanol, and ethanol gases can
intercalate between the lamellae, forming a graphite/graphene
heterostructure [48]. These defects and the polarities of the
molecules interspersed in the graphite structure can change
its bandgap and make it more conductive. The experimental
results obtained confirmed that the different molecules, with
different levels of polarization, led to a variation in conduc-
tivity, according to Fig. 3(a).

V. CONCLUSION

In this article, we report a multiplexed gas sensor with
graphite as the sensing material at room temperature. Among
the advantages of the proposed sensor in this work is the
ease of fabrication of IDE sensors using PCB technology,
the reduction of gas detection time through the design and
fabrication of a microchamber in PDMS, and the deposition of
the sensor material by the spray method. The sensing material
was demonstrated to be able to easily discriminate specific
organic VOC gases such as acetone, methanol, isopropanol,
ethanol, and chloroform, at room temperature. The gas sensor
mechanism suggests that the increase in detection can be
attributed to the polarity of the gas molecules that are adsorb-
ing onto the surface of the graphite. Furthermore, sensors
showed high stability and reproducibility after six months of
the initial experiments. These preliminary findings could lead
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to the development of a highly sensitive, low-cost multiple
detection gas sensor for toxic organic compounds.
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