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Every year, different areas of knowledge are becoming more interested
in 3D-printing technology. Recently, this technology was also proved
to be feasible for creating sensitive materials such as piezoelectrets.
This Letter extends the concept of a 3D printed piezoelectret to
produce a pressure sensitive film that can be employed as an ultrasonic
transducer for underwater applications, such as hydrophones. In order
to achieve this, a two-layer polypropylene film was printed using a fila-
ment-based 3D printer. Afterwards, adhesive electrodes were attached
on both sides of the film and electrical charging was applied. Later, the
3D printed film was mounted in a metal housing specially designed to
keep the film in direct contact with the water and to isolate the elec-
tronic amplification. The validation was performed using a piezoelec-
tric ceramic made of lead zirconate titanate (PZT), immersed in a water
tank, to produce ultrasonic sweeps to be sensed by the 3D printed
transducer. These tests revealed sensor sensitivities up to 600 mV
and promote a precise detection of the acoustic resonance frequency
of the PZT at 43.7 kHz.
Introduction: 3D printing, also known as additive manufacturing
process, gained wide prominence in prototyping markets and custo-
mised products due to its simplicity in reproducing a computer-aided
design model [1, 2]. Nowadays, the usage of 3D printing is extended
to electronics [2], medical and dental prostheses [3, 4]. Quite recently,
it has been demonstrated that this technology could also be used to
produce smart-materials, i.e. materials with additional functionality,
such as electro-mechanical response, as it happens with the piezoelec-
trets [5]. These have proved to be a good alternative for piezo- and ferro-
electric films, such as polyvinylidene fluoride mainly because of their
polling simplicity, reduced cost and high electro-mechanical activity
[6]. Piezoelectrets are also known as ferroelectrets and are materials
that consist of films made from electret polymers with internal cavities
that are electrically charged [6–8]. The voids, necessary for creating
macroscopic electrical dipoles, can be made from foaming processes
or thermal moulding methods [6, 9–12]. Normally, this last method is
employed when there is a desire for producing piezoelectrets with
regular cavities and at the same time, with further advantages such as
homogeneous electrical charging and resonance frequency control
[12, 13]. Regarding controlled voids, the first 3D printed piezoelectrets
were made with very complex structure designs, requiring an additional
assembling process after the 3D printing [5]. This Letter presents an
improvement, simply by replacing the complex structures with a
simple 3D printing process that leaves air gaps between the extruded
filaments. Another improvement in the presented 3D printed piezoelec-
trets concerns the material itself since previously the employed polymer
was the acrylonitrile butadiene styrene and this was replaced by poly-
propylene (PP), which is a much more conventional polymer employed
in ferroelectrets. Therefore, it is described as the usage of the 3D printing
method for producing piezoelectrets using PP and a functional appli-
cation of this material as an acoustic sensor for a hydrophone device.
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Fig. 1 3D printing pattern with (1) first and (2) second layers

Experimental details: 3D printed polypropylene piezoelectrets were pro-
duced by printing two layers of extruded filaments being one on top of
other in the opposite direction, forming a chess pattern as shown in
Fig. 1. After printing, adhesive copper cut in circular shapes was glued
on both sides of the film and an electrical charging was applied directly
to the electrodes during 10 s using a DC voltage with amplitude of
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2.5 kV. The chess pattern adopted in the printing process was responsible
for producing air cavities between the layers, which are necessary to form
the electrical dipoles of piezoelectrets. Once the piezoelectret was formed,
it was mounted inside an aluminium case, containing an electronic
amplifier with a gain of 100×, a backing material to improve impedance
matching and a sealing ring with an opening of 25 mm of diameter.
Fig. 2a shows an exploded view of the final device, which was tested
in a water environment to operate as a hydrophone. The experimental
test was performed according to the schematic setup presented in
Fig. 2b. The setup was mounted with a function generator (Tektronix
AFG3022C) to stimulate a lead zirconate titanate (PZT) piezoelectric
ceramic with an acoustic resonance of 40 kHz. The PZT ceramic was
placed on one side of an 8 mm-thick acrylic box (with a length, width,
and height of 216, 116, and 108 mm, respectively) filled with distilled
water. The piezoelectret hydrophone was placed in the opposite direction
directly in contact with the water and connected to an oscilloscope
(Keysight DSOX 2002A).
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Fig. 2 Hydrophone based on 3D printed polypropylene piezoelectric and
measuring setup

a Details of hydrophone and 3D printed PP piezoelectret
b Schematic of setup with acoustic emitter (PZT ceramic) and signal detector
(piezoelectret hydrophone)
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Fig. 3 Signal recorded with piezoelectret hydrophone during sweep of 1 s.
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After assembling the setup, the function generator was settled in the
sweep mode to provide sinusoidal waves of 10 Vpp with frequencies
from 1 μHz up to 50 kHz during 1 s. Five measurements were per-
formed in this mode to verify the reproducibility. From this, it was
found that the piezoceramic presents a resonance at 43.7 kHz. This fre-
quency was used as a reference to determine the maximum sensitivity of
the hydrophone in a direct measurement, stimulating the PZT with a
10 Vpp sinusoidal wave.

Results and discussion: Figs. 3a and b present the average results from
five measurements in the sweep mode, in the time domain and in the fre-
quency domain, respectively. Fig. 4 presents the signal detected by the
hydrophone, using the 43.7 kHz stimulation, where it is possible to
observe the maximum sensitivity of the hydrophone.
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Fig. 4 Signal detected by piezoelectret hydrophone when stimulated with
PZT at resonance frequency (43.7 kHz)
Conclusion: This Letter presented a functional application using 3D
printed piezoelectrets. In general, it consists of a hydrophone, which
is composed by its electronics and a polypropylene piezoelectret that
was fully printed in a 3D printer. The measurements revealed a final
device with a sensitivity of 600 mV and able to precisely detect the
acoustic resonance of a PZT ceramic, which according to the manufac-
ture was around 40 kHz. The main conclusion of this Letter is the via-
bility of producing functional piezoelectrets through 3D printing
technology using a very simple structure’s design.
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