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Abstract

This paper presents a thermoelectric (TE) generator and a solid-state battery for powering

microsystems. Prototypes of TE generators were fabricated and characterized. The TE

generator is a planar microstructure based on thin films of n-type bismuth telluride (Bi2Te3)

and p-type antimony telluride (Sb2Te3), which were deposited using co-evaporation. The

measurements on selected samples of Bi2Te3 and Sb2Te3 thin films indicated a Seebeck

coefficient in the range of 90–250 µV K−1 and an in-plane electrical resistivity in the range of

7–17 µÄ m. The measurements also showed TE figures-of-merit, ZT, at room temperatures

(T = 300 K) of 0.97 and 0.56, for thin films of Bi2Te3 and Sb2Te3, respectively (equivalent to a

power factor, PF, of 4.87 mW K−2 m−1 and 2.81 mW K−2 m−1). The solid-state battery is

based on thin films of: an anode of tin dioxide (SnO2), an electrolyte of lithium phosphorus

oxynitride (LixPOyNz, known as LiPON) and a cathode of lithium cobaltate (LiCoO2, known

as LiCO), which were deposited using the reactive RF (radio-frequency) sputtering. The

deposition and characterization results of these thin-films layers are also reported in this

paper.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Microsystem technology allows the fabrication of highly
miniaturized systems in high volume at low costs, which
contributes tomaking the systems virtually invisible andwould
result in an evenmorewidespread application. One of themost
important remaining challenges in these microsystems is to
ensure a reliable supply of electrical power. The requirements
generally imposed on reliability and overall systemdimensions
cannot be satisfied by external batteries [1]. Incorporating
some kind of energy retrieving system in such devices is a
highly promising solution to the problem. The use of freely
available external energy sources for powering mobile devices
is often referred to as energy harvesting [2, 3]. From the
available renewable power sources, the three most important
to harvest energy in remote micro/nanosystems are: vibration
[4], photovoltaic [5] and thermal gradients [6]. The thermal-to-
electric energy conversion does not requiremovingmechanical
parts and has huge potential in a wide range of applications,
because it provides compact and distributed power, is quiet
in operation and it is usually environmentally friendly. These

features are ample justification of the growth in the worldwide
research efforts to bring the technology for thermoelectric
(TE) device fabrication into the realms of microsystem
technologies. Energy harvesting by taking advantage of
temperature differences is a highly suitable solution for
stand-alone microsystems. However solutions have to be
found for the low efficiency of directly silicon-compatible
materials before actual implementation can be considered.
Any temperature difference between the two surfaces of a
TE microgenerator can be converted into electrical energy
using the Seebeck principle [7]. However, as the energy
availability and power dissipation are not constant over time,
the energy management is an even more important function
and determines the potential for information processing [8].
This is the case of wireless sensor systems, which are usually
in the idle state for most of the time and should deliver a
peak load for only short periods of time. Moreover, the
temperature gradient may not always be present. Therefore,
the energy must be stored. A rechargeable thin-film battery
of Li-ion type integrated in the system is highly suitable
for that purpose. Since a minimum overall microsystem
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volume is required in many applications, the integration into

an integrated circuit (IC) is desirable. Thin-film solid-state

batteries are ideal candidates for such a purpose, because these

have demonstrated very high lifetime in terms of charging-

discharging cycles and are intrinsically safe [13]. Moreover,

either high voltage or high power is desirable in some

applications, thus these features can be obtained from thin-

films solid-state batteries [9].

Hybrid devices composed of energy storage systems (e.g.,

the batteries) and energy scavengers in a small volume require

some kind of energy management system [10]. The work

presented by Lhermet et al [11] is the first of this kind,

where a microbattery was deposited directly on a microchip

(that makes energy management). Basically, the device is

a microsystem composed of two (harvested) power sources

(either thermal [12] or inductive [8] type), the microchip

used to transform and to manage the harvested energy.

The microchip also interfaces with the microbattery. The

management operations are (1) the selection of external power

source (when both are present) from which the battery must

be charged; (2) to provide battery-compatible voltage levels;

(3) to decide when to stop the charging of the battery; (4) to

decide when to start the charging of the battery and finally,

(5) to use the external source for powering without using the

battery (thus, sparing it for situationswhen the external sources

of power would not be present). The microbattery is of lithium

type and it is composed of a stack of the following materials:

TiSO (the anode), LiPON (the electrolyte) and lithium (the

cathode). Further details concerning the fabrication of the

microbattery can be found in [9, 10]. The thermal-to-electric

conversion subsystem is composed of bismuth and antimony

telluride (Bi2Te3 and Sb2Te3) TE pairs, which were deposited

and patterned in lines and connected in series (by using

titanium and aluminiummetallic junctions) in order to provide

the desired voltage for harvesting purposes [12].

In this sequence this paper presents a TE microconverter,

which was especially designed and fabricated to meet the

requirements listed above. The materials selection, the design

and the layers for the thin-films solid-sate battery are also

described in this paper.

2. Thermoelectric generators

2.1. Overview

Tellurium (Te) compounds are well-established room

temperature TE materials, and macroscopic devices fabricated

using conventional techniques arewidely employed in industry

for TE power generation and TE cooling [14]. Different

deposition techniques for obtaining thin films of these

materials can be found in the literature. Such techniques

include the direct evaporation of the bulk materials made

by Da Silva [15]. However, such techniques revealed that

it was impossible to perform the deposition of Bi2Te3/Sb2Te3
thin films, due to the large differences in vapour pressure

of bismuth/antimony and tellurium, whose consequence was

a compositional gradient along the film thickness. In other

examples, concerning the deposition of tellurium compounds,

thin films have been made using thermal co-evaporation [16],

DC magnetron sputtering [17], RF magnetron sputtering [18],

flash evaporation [19], electrochemical deposition [20] and

metal-organic chemical vapour deposition (MOCVD) [21].

As described in this paper, the co-evaporation of both n-

type bismuth telluride (Bi2Te3) and p-type antimony telluride

(Sb2Te3) provides thin films with excellent figures-of-merit

[22], ZT, of 0.97 and 0.56, respectively. The best available

n-type thin films have (absolute value) a Seebeck coefficient

in the range 150–250 µV K−1, resistivity of 10–17 µÄ m,

thermal conductivity of about 1.3 W m−1 K−1 [23], carrier

concentration ≈6 × 1019 cm−3 and Hall mobility from 80

to 120 cm2 V−1 s−1. For the p-type thin films, the best

available results include a Seebeck coefficient in the range 90–

190 µV K−1, resistivity of 7–14 µÄ m, thermal conductivity

about 1.7 W m−1 K−1 [23], carrier concentration ≈4 ×

1019 cm−3, Hall mobility from 120 to 170 cm2 V−1 s−1 and

are slightly Te-rich (67–73%, measured by EDX—energy-

dispersive x-ray spectroscopy). It must be noted that these

EDX measurements had a typical inaccuracy of 2% and 3%

for the samples made of Bi2Te3 and Sb2Te3, respectively.

However, and despite the associated inaccuracies, these values

are similar to the best found in the literature for the bulk

materials. The performance of TE devices depends on the

figure of merit, ZT, of the material [24, 25], given by ZT =

α.T/(ρ.λ), where α is the Seebeck coefficient, ρ is the

electrical resistivity, λ is the thermal conductivity and T is

the temperature. Furthermore, in TE generators, the power

factor is also used to measure the performance, PF = α2/ρ

(W K−2 m−1). In TE applications, a good film-to-substrate

adhesion is obtained with Kapton films. This is due to its low

thermal conductivity (0.12 W m−1 K−1) [26] and appropriate

value of thermal expansion coefficient (12 × 10−6 K−1)

which closely matches the thermal expansion coefficient of

the telluride films, thus reducing residual stress and increasing

the adhesion.

2.2. Fabrication

Bismuth and antimony telluride thin films were fabricated

using the co-evaporation resistive technique in a high-vacuum

chamber with a pressure settled to p = 3 × 10−6 mbar. The

Sb/Bi evaporation flow rates, FrSb/FrBi (Å s
−1), and the Te

evaporation flow rate, FrTe (Å s
−1), are the primary evaporation

parameters. These parameters allow for tuning of the ratio of

the evaporation flow rates, R, which is given by: R = FrTe/FrSb
or R = FrTe/FrBi, which is the amount of Te divided by the

amount of Sb (or Bi) that is actually being deposited at the

substrate surface during co-evaporation. The power applied

to each evaporation boat was controlled in such a way that

constant bismuth and antimony evaporation flow rates, Fr(Bi)
and Fr(Sb) (Å s

−1), were maintained at 2 Å s−1, while the

tellurium evaporation flow rate, Fr(Te) (Å s−1), was in the

range 3–9 Å s−1 to achieve optimum composition of Bi2Te3
and Sb2Te3 thin films. A quartz crystal oscillator was placed

inside the chamber (for each thickness monitor) in order to

have material deposited only from the boat it monitors. The

information of each of these thicknessmonitors is the input of a
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Figure 1. The co-evaporation system, where the boats and the mass
sensors placed inside the chamber can be seen.

Figure 2. Photograph of a TE microconverter with eight pairs of TE
elements, fabricated with bottom contacts.

PID controller (in real time) and is used to keep the evaporation

rate constant. A metal sheet was placed between the two boats

to partially separate the flows from the two materials and fully

prevent mixing of both materials to occur at the quartz crystals

(see the figure 1).

The substrates were heated to the temperature set point,

Tsub (
◦C), which was varied between 150 ◦C and 300 ◦C.

Several series of Bi2Te3 thin films were fabricated at substrate

temperatures of 190 ◦C, 230 ◦C and 270 ◦C. For the Sb2Te3
thin films, the substrate temperatures were 150 ◦C, 180 ◦C and

220 ◦C. In each deposition session, a set of four substrates were

simultaneously subjected to the co-evaporation of thin-films

materials. Also, all thin films were deposited for a required

thickness of 1 µm.

Figure 2 shows a planar TE generator fabricated on top of

a 25µm thicknessKapton foil. Their contacts can be deposited

on top or bottom of the TE films.

3. The solid-state battery

3.1. Solid-state battery overview and design

Typically, a solid-state battery is fabricated by successive

thin-film depositions of the metal current collectors, cathode,

electrolyte and anode on a substrate [9–11, 27]. A variety

of materials are available for the deposition of the cathode,

electrolyte and anode. Lithium cobaltate (LiCoO2) was the

compound selected as the most suitable cathode due to its

excellent electrochemical cycling stability, which is a result of

the structural stability of the material, in which the layered

cation ordering is extremely well preserved even after a

repeated process of insertion and extraction of lithium ions

[28]. Lithium cobaltate is the most widely used cathode

material in thin-film Li-ion type of batteries, because it

produces a very high potential [29] and it has superior

performance in cycled charging/discharging (due to its high

structural stability it can be cycled more than 500 times with

a 80–90% capacity retention). Compared to other materials

(e.g., LiMn2O4, LiNiO2), lithium cobaltate is easy to fabricate

and has a relatively high charge storage capacity.

Thin-film solid electrolytes for thin-film batteries are

required to have high ionic conductivity, a negligible electronic

conductivity and be stable in contact with the anode and

cathode electrodes [29]. These requirements are met if the

battery electrolyte is lithium phosphorous oxynitride (LiPON).

The widespread use of this compound as electrolyte material

is due to the exceptional electrochemical stability and very

good conductivity of lithium ions [30]. Moreover, LiPON

films present an electronic resistivity greater than 1014 Ä cm,

which helps to minimize the short circuit self-discharge and

increasing the battery’s lifetime [31].

A number of metals and semiconductors (e.g., aluminium,

tin and silicon) react with lithium to form alloys by

electrochemical processes in a reversible way. These are

the most suitable candidates for use an anode in lithium-ion

batteries [32]. Tin dioxide (SnO2) was chosen for the anode

material due to their high-lithium storage capacity and low

potential of lithium ion intercalation. A tin dioxide anode

can give a maximum theoretical 781 mA h g−1 charge-storage

capacity [32]. Also, the average resistivity of tin dioxide films

are in the range 10–17 mÄ cm for films with a thickness less

than 100 nm and 5–9 mÄ cm for the thickness more than

100 nm.

3.2. Thin-film deposition

The material layers of the solid-state battery were all obtained

by thin-film deposition, using RF magnetron sputtering. The

sputtering system used is composed of a 2′′ planar magnetron

sputtering cathode and a R301-MKII (300 W RF generator

at 13.56 MHz) to generate the plasma. The control and

measurements of flow rate of the gases (argon and oxygen

or nitrogen) was done with a MKS type 246C single channel

power supply/readout system, through an analogueMKSmass

flowcontroller of type 1179A and froman analogueMKSmass

flow meter of type 179A.
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Table 1. Properties of the selected Bi2Te3 films.

Tsub %Te by
TF (◦C) R EDX α ρ PF ZT

1 190 1.7 – −180 16.6 1.95 0.4
2 230 2.1 62.8 −156 11.3 2.16 0.43
3 230 3.0 62.2 −152 13.4 1.72 0.34
4 270 3.2 62.0 −248 12.6 4.87 0.97
5 270 3.9 – −220 10.6 4.57 0.91

Table 2. Properties of the selected Sb2Te3 films.

Tsub %Te by
TF (◦C) R EDX α ρ PF ZT

1 150 1.47 54.5 91 7.6 1.09 0.22
2 150 1.67 61.4 140 14.0 1.40 0.28
3 220 2.50 67.3 156 9.2 2.66 0.53
4 220 3.18 73.5 188 12.6 2.81 0.56

Several tin dioxide (SnO2) layers were fabricated by

sputtering in order to obtain the optimum settings for the

deposition of this material. The best settings for argon (Ar)

and oxygen (O2) gases flows are 20 sccm at a pressure of

10−2mbar in the chamber. At these conditions a set of samples

with deposited tin dioxide thin films were obtained with a film

thickness of 630 nm.

The deposition of lithium cobaltate (LiCoO2) thin films

was performed at a sputtering chamber pressure of 10−6 mbar.

The argon and oxygen flows in the plasma were kept at

50 sccm and 10 sccm, respectively, in all experiments.

The material selected for the electrolyte was lithium

phosphorous oxynitride (Li3PO4N). However, the target

material used in the sputtering sessions was lithium

phosphorus tetraoxide (Li3PO4). Thus, LiPON was obtained

by reactive RF sputtering the Li3PO4 target in a nitrogen (N2)

and argon (Ar) atmosphere at a pressure of 3 × 10−3 mbar.

4. Experimental results and discussion

4.1. Thermoelectric generator

The in-plane electrical resistivity was measured using the

conventional four-probe van der Pauw method, at room

temperature. The thermal conductivity was measured using

the method proposed by Völklein [23], and it was 1.3 W m−1

K−1 and 1.8 W m−1 K−1 for the Bi2Te3 and Sb2Te3 films,

respectively. The measurements of the Seebeck coefficient

were made by connecting one side of the film to a fixed

temperature (heated metal block) and the other side to a heat

sink at room temperature.

Tables 1 and 2 show the experimental results in the

selected samples of Bi2Te3 and Sb2Te3 thin films (TFs), such as

the corresponding figures–of-merit, ZT, and the power factors,

PF (W K−2 m−1). It must be noted that in all the tables, the

quantities α, ρ and PF are expressed respectively in µV K−1,

µÄm and mWK−2 m−1 [33]. Also, the ZTs were obtained at

300 K.

Tables 1 and 2 show discrepancies, because the different

sets of thin films were obtained under different co-evaporation

Table 3. Comparison of the experimental results obtained for the
best Bi2Te3 thin-film sample with the up-to-date state-of-the-art.

Deposition method α ρ PF Reference

Co-evaporation −248 12.6 4.87 This work
Flash evaporation −252 18.2 3.49 [19]
DC magnetron sputtering −201 340 0.12 [17]
RF magnetron sputtering −248 7194 0.41 [18]

Table 4. Comparison of the experimental results obtained for the
best Sb2Te3 thin-film sample with the up-to-date state-of-the-art.

Deposition method α ρ PF Reference

Co-evaporation 188 12.6 2.81 This work
DC magnetron sputtering 304 5404 26 × 10−2 [17]
Electrodeposition 320 50 5.6 [20]

conditions. The explanation for a wide range of deposition

conditions was to identify the situation(s) with the best

combination(s) of results (e.g., the best values of α, ρ and

ZT), in order to be applied in the fabrication of the final

TE converter. From these two tables, it was possible to

observe that the thin films with the best TE properties were

obtainedwith substrate temperatures of 270 ◦C. The deposition

at substrate temperatures of 270 ◦C with a Bi evaporation rate

of 2 Å s−1 and Te evaporation rate of 6.4 Å s−1 (hence R =

3.2) resulted in thin films of optimum composition to result in

a TE power factor of PF = 4.87 × 10−3 W K−2 m−1. The

EDX analysis on thin films with these evaporation parameters

confirms a near-stoichiometric composition of the material

(35–40% Bi and 65–60% Te). It was observed that even

with different substrate temperatures, it is possible to obtain

thin films with a higher power factor when the composition is

slightly rich on tellurium (measured byEDX), e.g., for 60–65%

of Te. For the case of Sb2Te3 thin films, the best TE properties

were obtained with substrate temperatures of 220 ◦C with an

Sb evaporation rate of 2 Å s−1 and a Te evaporation rate of

6.4 Å s−1 (thus, R = 3.2). Such evaporation parameters

resulted in a tellurium rich composition (also measured by

EDX) of the compound with 25–35% of Sb and 65–75% of Te.

An increasedTEpower factor of PF= 2.81× 10−3WK−2m−1

was measured in the case of tellurium rich films (composition

with 70% Te). The measurements done on selected samples

also showed a Seebeck coefficient with an absolute value in

the range 90–250 µV K−1, an in-plane electrical resistivity of

7–17 µÄ m and figures-of-merit, ZT, at room temperatures

(T = 300 K) of 0.97 and 0.56 for Bi2Te3 and Sb2Te3 thin films,

respectively.

Tables 3 and 4 list the major experimental results of

deposited Bi2Te3/Sb2Te3 thin films, as well as those obtained

from the up-to-date work in the literature [17–20]. It can be

seen in table 3, the best performance in all TE aspects (α, ρ

and PF) of the deposited Bi2Te3 thin films, relatively to those

obtained with other techniques [17–19].

4.2. Layer material of the solid-state battery

The crystalline structure of the selected sample of tin dioxide

films was characterized by x-ray diffraction (XRD) and
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Figure 3. XRD spectra of the selected sample of tin dioxide thin
film before (top) and after (bottom) annealing at 300 ◦C.

Figure 4. Cross-section and surface SEM images of the selected
sample of tin dioxide thin film deposited under the optimal process
conditions.

diffractograms were recorded from 10◦ to 60◦ with a step

of 0.04◦. These measurements were made before (in the as-

deposited selected sample) and after annealing of the thin-film

selected sample at 300 ◦C. Figure 3 shows the XRD spectra for

the selected sample of tin dioxide thin films, before (top plot)

and after the annealing (bottom plot). It must be noted that the

clustering of atoms at elevated temperature results in increased

crystal dimensions, which increases the electrical conductivity

of thematerial. In contrast to electrolytes, it is desirable to have

anodes and cathodes with the highest possible conductivity.

This effect is confirmed in the XRD plots of figure 4, since the

annealed sample presents crystalline structure of single phase

tin dioxide has a sharper peak in the XRD as compared to the

non-annealed sample, which indicates a larger grain size in

the structure. Thus, high conductance thin films of tin dioxide

for the cathode are expected. The measurements showed thin

films of SnO2with a resistivity in the range 10
−3–10−1 µÄmm

before annealing. After annealing the resistivity decreased to

10−4 µÄ mm.

The table 5 compares the characteristics of the selected

sample with the state-of-the-art [34–37]. It is important to

note that the tin dioxide thin films of this work have the lowest

value for the resistivity, even with the smallest thin-films’

thickness. Utsumi et al [36] and Ma et al [37] use lower

annealing temperatures, however combining annealing with

Figure 5. XRD spectra of the selected sample of lithium cobaltate
thin film before (top) and after (bottom) annealing at 600 ◦C.

Figure 6. Cross-section and surface SEM images of a lithium
cobaltate thin film deposited under the optimal process conditions.

Table 5. Comparison of the experimental results obtained for the
best SnO2 thin-film sample with the most up-to-date state-of-the-art.

TFT
Deposition method ρ (µÄ mm) Tannl (oC) (nm) Reference

RF reactive magnetron 10−4 300 <600 This work
sputtering
Filtered arc plasma 10−3 – <100 [34]
Pulsed laser – 150–400 – [35]
DC sputtering 36 × 10−4 200 150 [36]
RF sputtering 3.7 × 10−4 30–220 285 [37]

deposition, which significantly complicated the control of the

deposition. The SEM images presented in figure 4 are for a

selected sample of a tin dioxide thin film deposited under the

optimal settings.

Figures 5 and 6 show the XRD spectra and SEM images

of the selected sample of lithium cobaltate thin film that were

deposited at a pressure of 10−2 mbar. The diffractograms

in figure 5 showed a predominance of lithium cobaltate

compound in the composition of the selected sample. This

observation is in accordance with the XRD plots presented by

Bates et al [38]. The apparent grain boundaries in the surface

SEM of the figure 6 are a result of the annealing process

which was carried out by heating the thin-film substrate at a

temperature of 300 ◦C. Despite it, a detailed analysis allows

the observation of a crystalline structure that explains the XRD

peaks of lithium cobaltate in the annealed samples.
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Figure 7. XRD spectra of the selected sample of LiPON thin film
before (top) and after (bottom) annealing at 550 ◦C.

The best performing batteries have electrolytes with the
highest ionic conduction. Thus, the best suitable material and
its properties must be explored. It is a generally accepted
fact that amorphous electrolytes have superior properties over
crystalline electrolytes with respect to the ionic conduction.
Some of the reasons for preferring electrolytes to amorphous
structures are: the selection over a huge range of possible
compositions and the easy deposition of isotropic thin films
without grain boundaries. This means that the amorphous
structures of the amorphous materials will result in thin
films with high ionic conduction as compared to crystalline
structures. The XRD diffractogram shown in figure 7 was
obtained in LiPON thin films before (as-deposited thin films)
and after the annealing at 550 ◦C. Both plots confirm the
amorphous structure (the absence of any crystalline structure)
of the LiPON thin films in the both situations. As suggested
by Hamon et al [39] LiPON thin films with an amorphous
structure are the most suitable candidates for achieving high
ionic conductivity. Consequently, these are the ones with the
superior features for use as electrolytes in solid-state thin-films
batteries. Moreover, the similar XRD results observed for
the as-deposited (before annealing) and the annealed selected
samples of deposited LiPON thin films are evidence of the
feasibility to fabricate the battery. Despite annealing to
optimize the properties of LiPON, the amorphous structure
in the solid-state electrolyte is maintained.

The ionic conductivity measurement on a selected sample
of LiPON was done using the procedure described by Hamon
et al [39] and Park et al [40]. A signal with a peak-to-peak
amplitude of 25 mV was used to measure the impedance of
the selected sample for several values of frequency (from
0.5 Hz to 65 kHz). Then, both real (Zreal) and imaginary
(Zimag) parts of the measured impedances were respectively
projected in the x-axis and y-axis, in order to obtain a 2D
Nyquist plot. Two Nyquist plots for two room temperatures
(295.95 K and 298.95 K) were obtained and are both depicted
in figure 8.

The diameter of the semi-circle indicates the resistance,
R (Ä), of the electrolyte, whose values were obtained with the

(a)

(b)

Figure 8. AC impedance analysis of LiPON electrolyte, showing
Nyquist plots for room temperatures of (a) 295.95 K and
(b) 298.95 K.

help of the Autolab software. The equation that describes the

ion conductivity, σ (S cm−1), of LiPON is: σ = (d/A)/R,

where d is the thickness of thin film, A (m2) is the LiPON–tip

(the tip assures the electrical connection between the LiPON

and the read-out instrumentation) interface area and R is

the obtained resistance. The measurements showed ionic

conductivities of 9.3 × 10−8 S cm−1 and 1.3 × 10−7 S

cm−1 at temperatures of 295.95 K and 298.95 K, respectively.

Figure 8 allows us to obtain these two conclusions: (1) the

ionic conductivity at about room temperature increases with

temperature and (2) an increased slope of the straight line in

the Nyquist plot also indicates an increased ionic conductivity.

5. Conclusions

This paper presented a planar TE generator. This TE

microstructure is based on thin films of Bi2Te3 and Sb2Te3,

which were selected due to their highest figure-of-merit, ZT,
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at room temperature. The battery layers (anode, electrolyte

and cathode) for the solid-state battery were deposited using

the reactive RF sputtering technique. The materials for the

cathode, electrolyte and anode were lithium cobaltate, lithium

phosphorous oxynitride and tin dioxide, respectively. The

deposition process and setup parameters were adjusted to

obtain maximum performance of materials. The deposited

films were characterized in order to obtain a specification

in terms of the homogeneity, composition and electrical

properties, as a function of the flow rates of gases during

sputtering.

The target application of the TE generator and the solid-

state battery is for integration with stand-alone microsystems.
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